#! /usr/bin/env python import sys from optparse import OptionParser import random # finds the highest nonempty queue # -1 if they are all empty def FindQueue(): q = hiQueue while q > 0: if len(queue[q]) > 0: return q q -= 1 if len(queue[0]) > 0: return 0 return -1 def LowerQueue(currJob, currQueue, issuedIO): if currQueue > 0: # in this case, have to change the priority of the job job[currJob]['currPri'] = currQueue - 1 if issuedIO == False: queue[currQueue-1].append(currJob) job[currJob]['ticksLeft'] = quantum[currQueue-1] else: if issuedIO == False: queue[currQueue].append(currJob) job[currJob]['ticksLeft'] = quantum[currQueue] def Abort(str): sys.stderr.write(str + '\n') exit(1) # # PARSE ARGUMENTS # parser = OptionParser() parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed') parser.add_option('-n', '--numQueues', help='number of queues in MLFQ (if not using -Q)', default=3, action='store', type='int', dest='numQueues') parser.add_option('-q', '--quantum', help='length of time slice (if not using -Q)', default=10, action='store', type='int', dest='quantum') parser.add_option('-Q', '--quantumList', help='length of time slice per queue level, specified as x,y,z,... where x is the quantum length for the highest priority queue, y the next highest, and so forth', default='', action='store', type='string', dest='quantumList') parser.add_option('-j', '--numJobs', default=3, help='number of jobs in the system', action='store', type='int', dest='numJobs') parser.add_option('-m', '--maxlen', default=100, help='max run-time of a job (if randomly generating)', action='store', type='int', dest='maxlen') parser.add_option('-M', '--maxio', default=10, help='max I/O frequency of a job (if randomly generating)', action='store', type='int', dest='maxio') parser.add_option('-B', '--boost', default=0, help='how often to boost the priority of all jobs back to high priority', action='store', type='int', dest='boost') parser.add_option('-i', '--iotime', default=5, help='how long an I/O should last (fixed constant)', action='store', type='int', dest='ioTime') parser.add_option('-S', '--stay', default=False, help='reset and stay at same priority level when issuing I/O', action='store_true', dest='stay') parser.add_option('-I', '--iobump', default=False, help='if specified, jobs that finished I/O move immediately to front of current queue', action='store_true', dest='iobump') parser.add_option('-l', '--jlist', default='', help='a comma-separated list of jobs to run, in the form x1,y1,z1:x2,y2,z2:... where x is start time, y is run time, and z is how often the job issues an I/O request', action='store', type='string', dest='jlist') parser.add_option('-c', help='compute answers for me', action='store_true', default=False, dest='solve') (options, args) = parser.parse_args() random.seed(options.seed) # MLFQ: How Many Queues numQueues = options.numQueues quantum = {} if options.quantumList != '': # instead, extract number of queues and their time slic quantumLengths = options.quantumList.split(',') numQueues = len(quantumLengths) qc = numQueues - 1 for i in range(numQueues): quantum[qc] = int(quantumLengths[i]) qc -= 1 else: for i in range(numQueues): quantum[i] = int(options.quantum) hiQueue = numQueues - 1 # MLFQ: I/O Model # the time for each IO: not great to have a single fixed time but... ioTime = int(options.ioTime) # This tracks when IOs and other interrupts are complete ioDone = {} # This stores all info about the jobs job = {} # seed the random generator random.seed(options.seed) # jlist 'startTime,runTime,ioFreq:startTime,runTime,ioFreq:...' jobCnt = 0 if options.jlist != '': allJobs = options.jlist.split(':') for j in allJobs: jobInfo = j.split(',') if len(jobInfo) != 3: sys.stderr.write('Badly formatted job string. Should be x1,y1,z1:x2,y2,z2:...\n') sys.stderr.write('where x is the startTime, y is the runTime, and z is the I/O frequency.\n') exit(1) assert(len(jobInfo) == 3) startTime = int(jobInfo[0]) runTime = int(jobInfo[1]) ioFreq = int(jobInfo[2]) job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue], 'startTime':startTime, 'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False, 'firstRun':-1} if startTime not in ioDone: ioDone[startTime] = [] ioDone[startTime].append((jobCnt, 'JOB BEGINS')) jobCnt += 1 else: # do something random for j in range(options.numJobs): startTime = 0 runTime = int(random.random() * options.maxlen) ioFreq = int(random.random() * options.maxio) job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue], 'startTime':startTime, 'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False, 'firstRun':-1} if startTime not in ioDone: ioDone[startTime] = [] ioDone[startTime].append((jobCnt, 'JOB BEGINS')) jobCnt += 1 numJobs = len(job) print 'Here is the list of inputs:' print 'OPTIONS jobs', numJobs print 'OPTIONS queues', numQueues for i in range(len(quantum)-1,-1,-1): print 'OPTIONS quantum length for queue %2d is %3d' % (i, quantum[i]) print 'OPTIONS boost', options.boost print 'OPTIONS ioTime', options.ioTime print 'OPTIONS stayAfterIO', options.stay print 'OPTIONS iobump', options.iobump print '\n' print 'For each job, three defining characteristics are given:' print ' startTime : at what time does the job enter the system' print ' runTime : the total CPU time needed by the job to finish' print ' ioFreq : every ioFreq time units, the job issues an I/O' print ' (the I/O takes ioTime units to complete)\n' print 'Job List:' for i in range(numJobs): print ' Job %2d: startTime %3d - runTime %3d - ioFreq %3d' % (i, job[i]['startTime'], job[i]['runTime'], job[i]['ioFreq']) print '' if options.solve == False: print 'Compute the execution trace for the given workloads.' print 'If you would like, also compute the response and turnaround' print 'times for each of the jobs.' print '' print 'Use the -c flag to get the exact results when you are finished.\n' exit(0) # initialize the MLFQ queues queue = {} for q in range(numQueues): queue[q] = [] # TIME IS CENTRAL currTime = 0 # use these to know when we're finished totalJobs = len(job) finishedJobs = 0 print '\nExecution Trace:\n' while finishedJobs < totalJobs: # find highest priority job # run it until either # (a) the job uses up its time quantum # (b) the job performs an I/O # check for priority boost if options.boost > 0 and currTime != 0: if currTime % options.boost == 0: print '[ time %d ] BOOST ( every %d )' % (currTime, options.boost) # remove all jobs from queues (except high queue) for q in range(numQueues-1): for j in queue[q]: if job[j]['doingIO'] == False: queue[hiQueue].append(j) queue[q] = [] # print 'BOOST: QUEUES look like:', queue # change priority to high priority # reset number of ticks left for all jobs (XXX just for lower jobs?) # add to highest run queue (if not doing I/O) for j in range(numJobs): # print '-> Boost %d (timeLeft %d)' % (j, job[j]['timeLeft']) if job[j]['timeLeft'] > 0: # print '-> FinalBoost %d (timeLeft %d)' % (j, job[j]['timeLeft']) job[j]['currPri'] = hiQueue job[j]['ticksLeft'] = quantum[hiQueue] # print 'BOOST END: QUEUES look like:', queue # check for any I/Os done if currTime in ioDone: for (j, type) in ioDone[currTime]: q = job[j]['currPri'] job[j]['doingIO'] = False print '[ time %d ] %s by JOB %d' % (currTime, type, j) if options.iobump == False: queue[q].append(j) else: queue[q].insert(0, j) # now find the highest priority job currQueue = FindQueue() if currQueue == -1: print '[ time %d ] IDLE' % (currTime) currTime += 1 continue #print 'FOUND QUEUE: %d' % currQueue #print 'ALL QUEUES:', queue # there was at least one runnable job, and hence ... currJob = queue[currQueue][0] if job[currJob]['currPri'] != currQueue: Abort('currPri[%d] does not match currQueue[%d]' % (job[currJob]['currPri'], currQueue)) job[currJob]['timeLeft'] -= 1 job[currJob]['ticksLeft'] -= 1 if job[currJob]['firstRun'] == -1: job[currJob]['firstRun'] = currTime runTime = job[currJob]['runTime'] ioFreq = job[currJob]['ioFreq'] ticksLeft = job[currJob]['ticksLeft'] timeLeft = job[currJob]['timeLeft'] print '[ time %d ] Run JOB %d at PRIORITY %d [ TICKSLEFT %d RUNTIME %d TIMELEFT %d ]' % (currTime, currJob, currQueue, ticksLeft, runTime, timeLeft) if timeLeft < 0: Abort('Error: should never have less than 0 time left to run') # UPDATE TIME currTime += 1 # CHECK FOR JOB ENDING if timeLeft == 0: print '[ time %d ] FINISHED JOB %d' % (currTime, currJob) finishedJobs += 1 job[currJob]['endTime'] = currTime # print 'BEFORE POP', queue done = queue[currQueue].pop(0) # print 'AFTER POP', queue assert(done == currJob) continue # CHECK FOR IO issuedIO = False if ioFreq > 0 and (((runTime - timeLeft) % ioFreq) == 0): # time for an IO! print '[ time %d ] IO_START by JOB %d' % (currTime, currJob) issuedIO = True desched = queue[currQueue].pop(0) assert(desched == currJob) job[currJob]['doingIO'] = True # this does the bad rule -- reset your tick counter if you stay at the same level if options.stay == True: job[currJob]['ticksLeft'] = quantum[currQueue] # add to IO Queue: but which queue? futureTime = currTime + ioTime if futureTime not in ioDone: ioDone[futureTime] = [] ioDone[futureTime].append((currJob, 'IO_DONE')) # print 'NEW IO EVENT at ', futureTime, ' is ', ioDone[futureTime] # CHECK FOR QUANTUM ENDING AT THIS LEVEL if ticksLeft == 0: # print '--> DESCHEDULE %d' % currJob if issuedIO == False: # print '--> BUT IO HAS NOT BEEN ISSUED (therefor pop from queue)' desched = queue[currQueue].pop(0) assert(desched == currJob) # move down one queue! (unless lowest queue) LowerQueue(currJob, currQueue, issuedIO) # print out statistics print '' print 'Final statistics:' responseSum = 0 turnaroundSum = 0 for i in range(numJobs): response = job[i]['firstRun'] - job[i]['startTime'] turnaround = job[i]['endTime'] - job[i]['startTime'] print ' Job %2d: startTime %3d - response %3d - turnaround %3d' % (i, job[i]['startTime'], response, turnaround) responseSum += response turnaroundSum += turnaround print '\n Avg %2d: startTime n/a - response %.2f - turnaround %.2f' % (i, float(responseSum)/numJobs, float(turnaroundSum)/numJobs) print '\n'