@ -0,0 +1,292 @@ | |||
PROJ := 8 | |||
EMPTY := | |||
SPACE := $(EMPTY) $(EMPTY) | |||
SLASH := / | |||
V := @ | |||
#need llvm/cang-3.5+ | |||
#USELLVM := 1 | |||
# try to infer the correct GCCPREFX | |||
ifndef GCCPREFIX | |||
GCCPREFIX := $(shell if i386-ucore-elf-objdump -i 2>&1 | grep '^elf32-i386$$' >/dev/null 2>&1; \ | |||
then echo 'i386-ucore-elf-'; \ | |||
elif objdump -i 2>&1 | grep 'elf32-i386' >/dev/null 2>&1; \ | |||
then echo ''; \ | |||
else echo "***" 1>&2; \ | |||
echo "*** Error: Couldn't find an i386-ucore-elf version of GCC/binutils." 1>&2; \ | |||
echo "*** Is the directory with i386-ucore-elf-gcc in your PATH?" 1>&2; \ | |||
echo "*** If your i386-ucore-elf toolchain is installed with a command" 1>&2; \ | |||
echo "*** prefix other than 'i386-ucore-elf-', set your GCCPREFIX" 1>&2; \ | |||
echo "*** environment variable to that prefix and run 'make' again." 1>&2; \ | |||
echo "*** To turn off this error, run 'gmake GCCPREFIX= ...'." 1>&2; \ | |||
echo "***" 1>&2; exit 1; fi) | |||
endif | |||
# try to infer the correct QEMU | |||
ifndef QEMU | |||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \ | |||
then echo 'qemu-system-i386'; exit; \ | |||
elif which i386-elf-qemu > /dev/null; \ | |||
then echo 'i386-elf-qemu'; exit; \ | |||
elif which qemu > /dev/null; \ | |||
then echo 'qemu'; exit; \ | |||
else \ | |||
echo "***" 1>&2; \ | |||
echo "*** Error: Couldn't find a working QEMU executable." 1>&2; \ | |||
echo "*** Is the directory containing the qemu binary in your PATH" 1>&2; \ | |||
echo "***" 1>&2; exit 1; fi) | |||
endif | |||
# eliminate default suffix rules | |||
.SUFFIXES: .c .S .h | |||
# delete target files if there is an error (or make is interrupted) | |||
.DELETE_ON_ERROR: | |||
# define compiler and flags | |||
ifndef USELLVM | |||
HOSTCC := gcc | |||
HOSTCFLAGS := -g -Wall -O2 | |||
CC := $(GCCPREFIX)gcc | |||
CFLAGS := -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc $(DEFS) | |||
CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector) | |||
else | |||
HOSTCC := clang | |||
HOSTCFLAGS := -g -Wall -O2 | |||
CC := clang | |||
CFLAGS := -fno-builtin -Wall -g -m32 -mno-sse -nostdinc $(DEFS) | |||
CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector) | |||
endif | |||
GDB := $(GCCPREFIX)gdb | |||
CTYPE := c S | |||
LD := $(GCCPREFIX)ld | |||
LDFLAGS := -m $(shell $(LD) -V | grep elf_i386 2>/dev/null) | |||
LDFLAGS += -nostdlib | |||
OBJCOPY := $(GCCPREFIX)objcopy | |||
OBJDUMP := $(GCCPREFIX)objdump | |||
COPY := cp | |||
MKDIR := mkdir -p | |||
MV := mv | |||
RM := rm -f | |||
AWK := awk | |||
SED := sed | |||
SH := sh | |||
TR := tr | |||
TOUCH := touch -c | |||
OBJDIR := obj | |||
BINDIR := bin | |||
ALLOBJS := | |||
ALLDEPS := | |||
TARGETS := | |||
include tools/function.mk | |||
listf_cc = $(call listf,$(1),$(CTYPE)) | |||
# for cc | |||
add_files_cc = $(call add_files,$(1),$(CC),$(CFLAGS) $(3),$(2),$(4)) | |||
create_target_cc = $(call create_target,$(1),$(2),$(3),$(CC),$(CFLAGS)) | |||
# for hostcc | |||
add_files_host = $(call add_files,$(1),$(HOSTCC),$(HOSTCFLAGS),$(2),$(3)) | |||
create_target_host = $(call create_target,$(1),$(2),$(3),$(HOSTCC),$(HOSTCFLAGS)) | |||
cgtype = $(patsubst %.$(2),%.$(3),$(1)) | |||
objfile = $(call toobj,$(1)) | |||
asmfile = $(call cgtype,$(call toobj,$(1)),o,asm) | |||
outfile = $(call cgtype,$(call toobj,$(1)),o,out) | |||
symfile = $(call cgtype,$(call toobj,$(1)),o,sym) | |||
# for match pattern | |||
match = $(shell echo $(2) | $(AWK) '{for(i=1;i<=NF;i++){if(match("$(1)","^"$$(i)"$$")){exit 1;}}}'; echo $$?) | |||
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |||
# include kernel/user | |||
INCLUDE += libs/ | |||
CFLAGS += $(addprefix -I,$(INCLUDE)) | |||
LIBDIR += libs | |||
$(call add_files_cc,$(call listf_cc,$(LIBDIR)),libs,) | |||
# ------------------------------------------------------------------- | |||
# kernel | |||
KINCLUDE += kern/debug/ \ | |||
kern/driver/ \ | |||
kern/trap/ \ | |||
kern/mm/ \ | |||
kern/libs/ \ | |||
kern/sync/ \ | |||
kern/fs/ \ | |||
kern/process \ | |||
kern/schedule | |||
KSRCDIR += kern/init \ | |||
kern/libs \ | |||
kern/debug \ | |||
kern/driver \ | |||
kern/trap \ | |||
kern/mm \ | |||
kern/sync \ | |||
kern/fs \ | |||
kern/process \ | |||
kern/schedule | |||
KCFLAGS += $(addprefix -I,$(KINCLUDE)) | |||
$(call add_files_cc,$(call listf_cc,$(KSRCDIR)),kernel,$(KCFLAGS)) | |||
KOBJS = $(call read_packet,kernel libs) | |||
# create kernel target | |||
kernel = $(call totarget,kernel) | |||
$(kernel): tools/kernel.ld | |||
$(kernel): $(KOBJS) | |||
@echo + ld $@ | |||
$(V)$(LD) $(LDFLAGS) -T tools/kernel.ld -o $@ $(KOBJS) | |||
@$(OBJDUMP) -S $@ > $(call asmfile,kernel) | |||
@$(OBJDUMP) -t $@ | $(SED) '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > $(call symfile,kernel) | |||
$(call create_target,kernel) | |||
# ------------------------------------------------------------------- | |||
# create bootblock | |||
bootfiles = $(call listf_cc,boot) | |||
$(foreach f,$(bootfiles),$(call cc_compile,$(f),$(CC),$(CFLAGS) -Os -nostdinc)) | |||
bootblock = $(call totarget,bootblock) | |||
$(bootblock): $(call toobj,boot/bootasm.S) $(call toobj,$(bootfiles)) | $(call totarget,sign) | |||
@echo + ld $@ | |||
$(V)$(LD) $(LDFLAGS) -N -T tools/boot.ld $^ -o $(call toobj,bootblock) | |||
@$(OBJDUMP) -S $(call objfile,bootblock) > $(call asmfile,bootblock) | |||
@$(OBJCOPY) -S -O binary $(call objfile,bootblock) $(call outfile,bootblock) | |||
@$(call totarget,sign) $(call outfile,bootblock) $(bootblock) | |||
$(call create_target,bootblock) | |||
# ------------------------------------------------------------------- | |||
# create 'sign' tools | |||
$(call add_files_host,tools/sign.c,sign,sign) | |||
$(call create_target_host,sign,sign) | |||
# ------------------------------------------------------------------- | |||
# create ucore.img | |||
UCOREIMG := $(call totarget,ucore.img) | |||
$(UCOREIMG): $(kernel) $(bootblock) | |||
$(V)dd if=/dev/zero of=$@ count=10000 | |||
$(V)dd if=$(bootblock) of=$@ conv=notrunc | |||
$(V)dd if=$(kernel) of=$@ seek=1 conv=notrunc | |||
$(call create_target,ucore.img) | |||
# ------------------------------------------------------------------- | |||
# create swap.img | |||
SWAPIMG := $(call totarget,swap.img) | |||
$(SWAPIMG): | |||
$(V)dd if=/dev/zero of=$@ bs=1M count=128 | |||
$(call create_target,swap.img) | |||
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |||
$(call finish_all) | |||
IGNORE_ALLDEPS = clean \ | |||
dist-clean \ | |||
grade \ | |||
touch \ | |||
print-.+ \ | |||
handin | |||
ifeq ($(call match,$(MAKECMDGOALS),$(IGNORE_ALLDEPS)),0) | |||
-include $(ALLDEPS) | |||
endif | |||
# files for grade script | |||
TARGETS: $(TARGETS) | |||
.DEFAULT_GOAL := TARGETS | |||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback | |||
.PHONY: qemu qemu-nox debug debug-nox | |||
qemu-mon: $(UCOREIMG) $(SWAPIMG) | |||
$(V)$(QEMU) -no-reboot -monitor stdio $(QEMUOPTS) -serial null | |||
qemu: $(UCOREIMG) $(SWAPIMG) | |||
$(V)$(QEMU) -no-reboot -parallel stdio $(QEMUOPTS) -serial null | |||
qemu-nox: $(UCOREIMG) $(SWAPIMG) | |||
$(V)$(QEMU) -no-reboot -serial mon:stdio $(QEMUOPTS) -nographic | |||
TERMINAL := gnome-terminal | |||
debug: $(UCOREIMG) $(SWAPIMG) | |||
$(V)$(QEMU) -S -s -parallel stdio $(QEMUOPTS) -serial null & | |||
$(V)sleep 2 | |||
$(V)$(TERMINAL) -e "$(GDB) -q -x tools/gdbinit" | |||
debug-nox: $(UCOREIMG) $(SWAPIMG) | |||
$(V)$(QEMU) -S -s -serial mon:stdio $(QEMUOPTS) -nographic & | |||
$(V)sleep 2 | |||
$(V)$(TERMINAL) -e "$(GDB) -q -x tools/gdbinit" | |||
.PHONY: grade touch | |||
GRADE_GDB_IN := .gdb.in | |||
GRADE_QEMU_OUT := .qemu.out | |||
HANDIN := proj$(PROJ)-handin.tar.gz | |||
TOUCH_FILES := kern/trap/trap.c | |||
MAKEOPTS := --quiet --no-print-directory | |||
grade: | |||
$(V)$(MAKE) $(MAKEOPTS) clean | |||
$(V)$(SH) tools/grade.sh | |||
touch: | |||
$(V)$(foreach f,$(TOUCH_FILES),$(TOUCH) $(f)) | |||
print-%: | |||
@echo $($(shell echo $(patsubst print-%,%,$@) | $(TR) [a-z] [A-Z])) | |||
.PHONY: clean dist-clean handin packall tags | |||
clean: | |||
$(V)$(RM) $(GRADE_GDB_IN) $(GRADE_QEMU_OUT) cscope* tags | |||
-$(RM) -r $(OBJDIR) $(BINDIR) | |||
dist-clean: clean | |||
-$(RM) $(HANDIN) | |||
handin: packall | |||
@echo Please visit http://learn.tsinghua.edu.cn and upload $(HANDIN). Thanks! | |||
packall: clean | |||
@$(RM) -f $(HANDIN) | |||
@tar -czf $(HANDIN) `find . -type f -o -type d | grep -v '^\.*$$' | grep -vF '$(HANDIN)'` | |||
tags: | |||
@echo TAGS ALL | |||
$(V)rm -f cscope.files cscope.in.out cscope.out cscope.po.out tags | |||
$(V)find . -type f -name "*.[chS]" >cscope.files | |||
$(V)cscope -bq | |||
$(V)ctags -L cscope.files |
@ -0,0 +1,26 @@ | |||
#ifndef __BOOT_ASM_H__ | |||
#define __BOOT_ASM_H__ | |||
/* Assembler macros to create x86 segments */ | |||
/* Normal segment */ | |||
#define SEG_NULLASM \ | |||
.word 0, 0; \ | |||
.byte 0, 0, 0, 0 | |||
#define SEG_ASM(type,base,lim) \ | |||
.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \ | |||
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \ | |||
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff) | |||
/* Application segment type bits */ | |||
#define STA_X 0x8 // Executable segment | |||
#define STA_E 0x4 // Expand down (non-executable segments) | |||
#define STA_C 0x4 // Conforming code segment (executable only) | |||
#define STA_W 0x2 // Writeable (non-executable segments) | |||
#define STA_R 0x2 // Readable (executable segments) | |||
#define STA_A 0x1 // Accessed | |||
#endif /* !__BOOT_ASM_H__ */ | |||
@ -0,0 +1,107 @@ | |||
#include <asm.h> | |||
# Start the CPU: switch to 32-bit protected mode, jump into C. | |||
# The BIOS loads this code from the first sector of the hard disk into | |||
# memory at physical address 0x7c00 and starts executing in real mode | |||
# with %cs=0 %ip=7c00. | |||
.set PROT_MODE_CSEG, 0x8 # kernel code segment selector | |||
.set PROT_MODE_DSEG, 0x10 # kernel data segment selector | |||
.set CR0_PE_ON, 0x1 # protected mode enable flag | |||
.set SMAP, 0x534d4150 | |||
# start address should be 0:7c00, in real mode, the beginning address of the running bootloader | |||
.globl start | |||
start: | |||
.code16 # Assemble for 16-bit mode | |||
cli # Disable interrupts | |||
cld # String operations increment | |||
# Set up the important data segment registers (DS, ES, SS). | |||
xorw %ax, %ax # Segment number zero | |||
movw %ax, %ds # -> Data Segment | |||
movw %ax, %es # -> Extra Segment | |||
movw %ax, %ss # -> Stack Segment | |||
# Enable A20: | |||
# For backwards compatibility with the earliest PCs, physical | |||
# address line 20 is tied low, so that addresses higher than | |||
# 1MB wrap around to zero by default. This code undoes this. | |||
seta20.1: | |||
inb $0x64, %al # Wait for not busy(8042 input buffer empty). | |||
testb $0x2, %al | |||
jnz seta20.1 | |||
movb $0xd1, %al # 0xd1 -> port 0x64 | |||
outb %al, $0x64 # 0xd1 means: write data to 8042's P2 port | |||
seta20.2: | |||
inb $0x64, %al # Wait for not busy(8042 input buffer empty). | |||
testb $0x2, %al | |||
jnz seta20.2 | |||
movb $0xdf, %al # 0xdf -> port 0x60 | |||
outb %al, $0x60 # 0xdf = 11011111, means set P2's A20 bit(the 1 bit) to 1 | |||
probe_memory: | |||
movl $0, 0x8000 | |||
xorl %ebx, %ebx | |||
movw $0x8004, %di | |||
start_probe: | |||
movl $0xE820, %eax | |||
movl $20, %ecx | |||
movl $SMAP, %edx | |||
int $0x15 | |||
jnc cont | |||
movw $12345, 0x8000 | |||
jmp finish_probe | |||
cont: | |||
addw $20, %di | |||
incl 0x8000 | |||
cmpl $0, %ebx | |||
jnz start_probe | |||
finish_probe: | |||
# Switch from real to protected mode, using a bootstrap GDT | |||
# and segment translation that makes virtual addresses | |||
# identical to physical addresses, so that the | |||
# effective memory map does not change during the switch. | |||
lgdt gdtdesc | |||
movl %cr0, %eax | |||
orl $CR0_PE_ON, %eax | |||
movl %eax, %cr0 | |||
# Jump to next instruction, but in 32-bit code segment. | |||
# Switches processor into 32-bit mode. | |||
ljmp $PROT_MODE_CSEG, $protcseg | |||
.code32 # Assemble for 32-bit mode | |||
protcseg: | |||
# Set up the protected-mode data segment registers | |||
movw $PROT_MODE_DSEG, %ax # Our data segment selector | |||
movw %ax, %ds # -> DS: Data Segment | |||
movw %ax, %es # -> ES: Extra Segment | |||
movw %ax, %fs # -> FS | |||
movw %ax, %gs # -> GS | |||
movw %ax, %ss # -> SS: Stack Segment | |||
# Set up the stack pointer and call into C. The stack region is from 0--start(0x7c00) | |||
movl $0x0, %ebp | |||
movl $start, %esp | |||
call bootmain | |||
# If bootmain returns (it shouldn't), loop. | |||
spin: | |||
jmp spin | |||
.data | |||
# Bootstrap GDT | |||
.p2align 2 # force 4 byte alignment | |||
gdt: | |||
SEG_NULLASM # null seg | |||
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg for bootloader and kernel | |||
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg for bootloader and kernel | |||
gdtdesc: | |||
.word 0x17 # sizeof(gdt) - 1 | |||
.long gdt # address gdt |
@ -0,0 +1,116 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <elf.h> | |||
/* ********************************************************************* | |||
* This a dirt simple boot loader, whose sole job is to boot | |||
* an ELF kernel image from the first IDE hard disk. | |||
* | |||
* DISK LAYOUT | |||
* * This program(bootasm.S and bootmain.c) is the bootloader. | |||
* It should be stored in the first sector of the disk. | |||
* | |||
* * The 2nd sector onward holds the kernel image. | |||
* | |||
* * The kernel image must be in ELF format. | |||
* | |||
* BOOT UP STEPS | |||
* * when the CPU boots it loads the BIOS into memory and executes it | |||
* | |||
* * the BIOS intializes devices, sets of the interrupt routines, and | |||
* reads the first sector of the boot device(e.g., hard-drive) | |||
* into memory and jumps to it. | |||
* | |||
* * Assuming this boot loader is stored in the first sector of the | |||
* hard-drive, this code takes over... | |||
* | |||
* * control starts in bootasm.S -- which sets up protected mode, | |||
* and a stack so C code then run, then calls bootmain() | |||
* | |||
* * bootmain() in this file takes over, reads in the kernel and jumps to it. | |||
* */ | |||
#define SECTSIZE 512 | |||
#define ELFHDR ((struct elfhdr *)0x10000) // scratch space | |||
/* waitdisk - wait for disk ready */ | |||
static void | |||
waitdisk(void) { | |||
while ((inb(0x1F7) & 0xC0) != 0x40) | |||
/* do nothing */; | |||
} | |||
/* readsect - read a single sector at @secno into @dst */ | |||
static void | |||
readsect(void *dst, uint32_t secno) { | |||
// wait for disk to be ready | |||
waitdisk(); | |||
outb(0x1F2, 1); // count = 1 | |||
outb(0x1F3, secno & 0xFF); | |||
outb(0x1F4, (secno >> 8) & 0xFF); | |||
outb(0x1F5, (secno >> 16) & 0xFF); | |||
outb(0x1F6, ((secno >> 24) & 0xF) | 0xE0); | |||
outb(0x1F7, 0x20); // cmd 0x20 - read sectors | |||
// wait for disk to be ready | |||
waitdisk(); | |||
// read a sector | |||
insl(0x1F0, dst, SECTSIZE / 4); | |||
} | |||
/* * | |||
* readseg - read @count bytes at @offset from kernel into virtual address @va, | |||
* might copy more than asked. | |||
* */ | |||
static void | |||
readseg(uintptr_t va, uint32_t count, uint32_t offset) { | |||
uintptr_t end_va = va + count; | |||
// round down to sector boundary | |||
va -= offset % SECTSIZE; | |||
// translate from bytes to sectors; kernel starts at sector 1 | |||
uint32_t secno = (offset / SECTSIZE) + 1; | |||
// If this is too slow, we could read lots of sectors at a time. | |||
// We'd write more to memory than asked, but it doesn't matter -- | |||
// we load in increasing order. | |||
for (; va < end_va; va += SECTSIZE, secno ++) { | |||
readsect((void *)va, secno); | |||
} | |||
} | |||
/* bootmain - the entry of bootloader */ | |||
void | |||
bootmain(void) { | |||
// read the 1st page off disk | |||
readseg((uintptr_t)ELFHDR, SECTSIZE * 8, 0); | |||
// is this a valid ELF? | |||
if (ELFHDR->e_magic != ELF_MAGIC) { | |||
goto bad; | |||
} | |||
struct proghdr *ph, *eph; | |||
// load each program segment (ignores ph flags) | |||
ph = (struct proghdr *)((uintptr_t)ELFHDR + ELFHDR->e_phoff); | |||
eph = ph + ELFHDR->e_phnum; | |||
for (; ph < eph; ph ++) { | |||
readseg(ph->p_va & 0xFFFFFF, ph->p_memsz, ph->p_offset); | |||
} | |||
// call the entry point from the ELF header | |||
// note: does not return | |||
((void (*)(void))(ELFHDR->e_entry & 0xFFFFFF))(); | |||
bad: | |||
outw(0x8A00, 0x8A00); | |||
outw(0x8A00, 0x8E00); | |||
/* do nothing */ | |||
while (1); | |||
} | |||
@ -0,0 +1,27 @@ | |||
#ifndef __KERN_DEBUG_ASSERT_H__ | |||
#define __KERN_DEBUG_ASSERT_H__ | |||
#include <defs.h> | |||
void __warn(const char *file, int line, const char *fmt, ...); | |||
void __noreturn __panic(const char *file, int line, const char *fmt, ...); | |||
#define warn(...) \ | |||
__warn(__FILE__, __LINE__, __VA_ARGS__) | |||
#define panic(...) \ | |||
__panic(__FILE__, __LINE__, __VA_ARGS__) | |||
#define assert(x) \ | |||
do { \ | |||
if (!(x)) { \ | |||
panic("assertion failed: %s", #x); \ | |||
} \ | |||
} while (0) | |||
// static_assert(x) will generate a compile-time error if 'x' is false. | |||
#define static_assert(x) \ | |||
switch (x) { case 0: case (x): ; } | |||
#endif /* !__KERN_DEBUG_ASSERT_H__ */ | |||
@ -0,0 +1,326 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <stab.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
#include <sync.h> | |||
#include <kdebug.h> | |||
#include <kmonitor.h> | |||
#include <assert.h> | |||
#define STACKFRAME_DEPTH 20 | |||
extern const struct stab __STAB_BEGIN__[]; // beginning of stabs table | |||
extern const struct stab __STAB_END__[]; // end of stabs table | |||
extern const char __STABSTR_BEGIN__[]; // beginning of string table | |||
extern const char __STABSTR_END__[]; // end of string table | |||
/* debug information about a particular instruction pointer */ | |||
struct eipdebuginfo { | |||
const char *eip_file; // source code filename for eip | |||
int eip_line; // source code line number for eip | |||
const char *eip_fn_name; // name of function containing eip | |||
int eip_fn_namelen; // length of function's name | |||
uintptr_t eip_fn_addr; // start address of function | |||
int eip_fn_narg; // number of function arguments | |||
}; | |||
/* * | |||
* stab_binsearch - according to the input, the initial value of | |||
* range [*@region_left, *@region_right], find a single stab entry | |||
* that includes the address @addr and matches the type @type, | |||
* and then save its boundary to the locations that pointed | |||
* by @region_left and @region_right. | |||
* | |||
* Some stab types are arranged in increasing order by instruction address. | |||
* For example, N_FUN stabs (stab entries with n_type == N_FUN), which | |||
* mark functions, and N_SO stabs, which mark source files. | |||
* | |||
* Given an instruction address, this function finds the single stab entry | |||
* of type @type that contains that address. | |||
* | |||
* The search takes place within the range [*@region_left, *@region_right]. | |||
* Thus, to search an entire set of N stabs, you might do: | |||
* | |||
* left = 0; | |||
* right = N - 1; (rightmost stab) | |||
* stab_binsearch(stabs, &left, &right, type, addr); | |||
* | |||
* The search modifies *region_left and *region_right to bracket the @addr. | |||
* *@region_left points to the matching stab that contains @addr, | |||
* and *@region_right points just before the next stab. | |||
* If *@region_left > *region_right, then @addr is not contained in any | |||
* matching stab. | |||
* | |||
* For example, given these N_SO stabs: | |||
* Index Type Address | |||
* 0 SO f0100000 | |||
* 13 SO f0100040 | |||
* 117 SO f0100176 | |||
* 118 SO f0100178 | |||
* 555 SO f0100652 | |||
* 556 SO f0100654 | |||
* 657 SO f0100849 | |||
* this code: | |||
* left = 0, right = 657; | |||
* stab_binsearch(stabs, &left, &right, N_SO, 0xf0100184); | |||
* will exit setting left = 118, right = 554. | |||
* */ | |||
static void | |||
stab_binsearch(const struct stab *stabs, int *region_left, int *region_right, | |||
int type, uintptr_t addr) { | |||
int l = *region_left, r = *region_right, any_matches = 0; | |||
while (l <= r) { | |||
int true_m = (l + r) / 2, m = true_m; | |||
// search for earliest stab with right type | |||
while (m >= l && stabs[m].n_type != type) { | |||
m --; | |||
} | |||
if (m < l) { // no match in [l, m] | |||
l = true_m + 1; | |||
continue; | |||
} | |||
// actual binary search | |||
any_matches = 1; | |||
if (stabs[m].n_value < addr) { | |||
*region_left = m; | |||
l = true_m + 1; | |||
} else if (stabs[m].n_value > addr) { | |||
*region_right = m - 1; | |||
r = m - 1; | |||
} else { | |||
// exact match for 'addr', but continue loop to find | |||
// *region_right | |||
*region_left = m; | |||
l = m; | |||
addr ++; | |||
} | |||
} | |||
if (!any_matches) { | |||
*region_right = *region_left - 1; | |||
} | |||
else { | |||
// find rightmost region containing 'addr' | |||
l = *region_right; | |||
for (; l > *region_left && stabs[l].n_type != type; l --) | |||
/* do nothing */; | |||
*region_left = l; | |||
} | |||
} | |||
/* * | |||
* debuginfo_eip - Fill in the @info structure with information about | |||
* the specified instruction address, @addr. Returns 0 if information | |||
* was found, and negative if not. But even if it returns negative it | |||
* has stored some information into '*info'. | |||
* */ | |||
int | |||
debuginfo_eip(uintptr_t addr, struct eipdebuginfo *info) { | |||
const struct stab *stabs, *stab_end; | |||
const char *stabstr, *stabstr_end; | |||
info->eip_file = "<unknown>"; | |||
info->eip_line = 0; | |||
info->eip_fn_name = "<unknown>"; | |||
info->eip_fn_namelen = 9; | |||
info->eip_fn_addr = addr; | |||
info->eip_fn_narg = 0; | |||
stabs = __STAB_BEGIN__; | |||
stab_end = __STAB_END__; | |||
stabstr = __STABSTR_BEGIN__; | |||
stabstr_end = __STABSTR_END__; | |||
// String table validity checks | |||
if (stabstr_end <= stabstr || stabstr_end[-1] != 0) { | |||
return -1; | |||
} | |||
// Now we find the right stabs that define the function containing | |||
// 'eip'. First, we find the basic source file containing 'eip'. | |||
// Then, we look in that source file for the function. Then we look | |||
// for the line number. | |||
// Search the entire set of stabs for the source file (type N_SO). | |||
int lfile = 0, rfile = (stab_end - stabs) - 1; | |||
stab_binsearch(stabs, &lfile, &rfile, N_SO, addr); | |||
if (lfile == 0) | |||
return -1; | |||
// Search within that file's stabs for the function definition | |||
// (N_FUN). | |||
int lfun = lfile, rfun = rfile; | |||
int lline, rline; | |||
stab_binsearch(stabs, &lfun, &rfun, N_FUN, addr); | |||
if (lfun <= rfun) { | |||
// stabs[lfun] points to the function name | |||
// in the string table, but check bounds just in case. | |||
if (stabs[lfun].n_strx < stabstr_end - stabstr) { | |||
info->eip_fn_name = stabstr + stabs[lfun].n_strx; | |||
} | |||
info->eip_fn_addr = stabs[lfun].n_value; | |||
addr -= info->eip_fn_addr; | |||
// Search within the function definition for the line number. | |||
lline = lfun; | |||
rline = rfun; | |||
} else { | |||
// Couldn't find function stab! Maybe we're in an assembly | |||
// file. Search the whole file for the line number. | |||
info->eip_fn_addr = addr; | |||
lline = lfile; | |||
rline = rfile; | |||
} | |||
info->eip_fn_namelen = strfind(info->eip_fn_name, ':') - info->eip_fn_name; | |||
// Search within [lline, rline] for the line number stab. | |||
// If found, set info->eip_line to the right line number. | |||
// If not found, return -1. | |||
stab_binsearch(stabs, &lline, &rline, N_SLINE, addr); | |||
if (lline <= rline) { | |||
info->eip_line = stabs[rline].n_desc; | |||
} else { | |||
return -1; | |||
} | |||
// Search backwards from the line number for the relevant filename stab. | |||
// We can't just use the "lfile" stab because inlined functions | |||
// can interpolate code from a different file! | |||
// Such included source files use the N_SOL stab type. | |||
while (lline >= lfile | |||
&& stabs[lline].n_type != N_SOL | |||
&& (stabs[lline].n_type != N_SO || !stabs[lline].n_value)) { | |||
lline --; | |||
} | |||
if (lline >= lfile && stabs[lline].n_strx < stabstr_end - stabstr) { | |||
info->eip_file = stabstr + stabs[lline].n_strx; | |||
} | |||
// Set eip_fn_narg to the number of arguments taken by the function, | |||
// or 0 if there was no containing function. | |||
if (lfun < rfun) { | |||
for (lline = lfun + 1; | |||
lline < rfun && stabs[lline].n_type == N_PSYM; | |||
lline ++) { | |||
info->eip_fn_narg ++; | |||
} | |||
} | |||
return 0; | |||
} | |||
/* * | |||
* print_kerninfo - print the information about kernel, including the location | |||
* of kernel entry, the start addresses of data and text segements, the start | |||
* address of free memory and how many memory that kernel has used. | |||
* */ | |||
void | |||
print_kerninfo(void) { | |||
extern char etext[], edata[], end[], kern_init[]; | |||
cprintf("Special kernel symbols:\n"); | |||
cprintf(" entry 0x%08x (phys)\n", kern_init); | |||
cprintf(" etext 0x%08x (phys)\n", etext); | |||
cprintf(" edata 0x%08x (phys)\n", edata); | |||
cprintf(" end 0x%08x (phys)\n", end); | |||
cprintf("Kernel executable memory footprint: %dKB\n", (end - kern_init + 1023)/1024); | |||
} | |||
/* * | |||
* print_debuginfo - read and print the stat information for the address @eip, | |||
* and info.eip_fn_addr should be the first address of the related function. | |||
* */ | |||
void | |||
print_debuginfo(uintptr_t eip) { | |||
struct eipdebuginfo info; | |||
if (debuginfo_eip(eip, &info) != 0) { | |||
cprintf(" <unknow>: -- 0x%08x --\n", eip); | |||
} | |||
else { | |||
char fnname[256]; | |||
int j; | |||
for (j = 0; j < info.eip_fn_namelen; j ++) { | |||
fnname[j] = info.eip_fn_name[j]; | |||
} | |||
fnname[j] = '\0'; | |||
cprintf(" %s:%d: %s+%d\n", info.eip_file, info.eip_line, | |||
fnname, eip - info.eip_fn_addr); | |||
} | |||
} | |||
static __noinline uint32_t | |||
read_eip(void) { | |||
uint32_t eip; | |||
asm volatile("movl 4(%%ebp), %0" : "=r" (eip)); | |||
return eip; | |||
} | |||
/* * | |||
* print_stackframe - print a list of the saved eip values from the nested 'call' | |||
* instructions that led to the current point of execution | |||
* | |||
* The x86 stack pointer, namely esp, points to the lowest location on the stack | |||
* that is currently in use. Everything below that location in stack is free. Pushing | |||
* a value onto the stack will invole decreasing the stack pointer and then writing | |||
* the value to the place that stack pointer pointes to. And popping a value do the | |||
* opposite. | |||
* | |||
* The ebp (base pointer) register, in contrast, is associated with the stack | |||
* primarily by software convention. On entry to a C function, the function's | |||
* prologue code normally saves the previous function's base pointer by pushing | |||
* it onto the stack, and then copies the current esp value into ebp for the duration | |||
* of the function. If all the functions in a program obey this convention, | |||
* then at any given point during the program's execution, it is possible to trace | |||
* back through the stack by following the chain of saved ebp pointers and determining | |||
* exactly what nested sequence of function calls caused this particular point in the | |||
* program to be reached. This capability can be particularly useful, for example, | |||
* when a particular function causes an assert failure or panic because bad arguments | |||
* were passed to it, but you aren't sure who passed the bad arguments. A stack | |||
* backtrace lets you find the offending function. | |||
* | |||
* The inline function read_ebp() can tell us the value of current ebp. And the | |||
* non-inline function read_eip() is useful, it can read the value of current eip, | |||
* since while calling this function, read_eip() can read the caller's eip from | |||
* stack easily. | |||
* | |||
* In print_debuginfo(), the function debuginfo_eip() can get enough information about | |||
* calling-chain. Finally print_stackframe() will trace and print them for debugging. | |||
* | |||
* Note that, the length of ebp-chain is limited. In boot/bootasm.S, before jumping | |||
* to the kernel entry, the value of ebp has been set to zero, that's the boundary. | |||
* */ | |||
void | |||
print_stackframe(void) { | |||
/* LAB1 2012011346 : STEP 1 */ | |||
/* (1) call read_ebp() to get the value of ebp. the type is (uint32_t); | |||
* (2) call read_eip() to get the value of eip. the type is (uint32_t); | |||
* (3) from 0 .. STACKFRAME_DEPTH | |||
* (3.1) printf value of ebp, eip | |||
* (3.2) (uint32_t)calling arguments [0..4] = the contents in address (unit32_t)ebp +2 [0..4] | |||
* (3.3) cprintf("\n"); | |||
* (3.4) call print_debuginfo(eip-1) to print the C calling function name and line number, etc. | |||
* (3.5) popup a calling stackframe | |||
* NOTICE: the calling funciton's return addr eip = ss:[ebp+4] | |||
* the calling funciton's ebp = ss:[ebp] | |||
*/ | |||
uint32_t ebp, eip; | |||
int i, j; | |||
ebp = read_ebp(); | |||
eip = read_eip(); | |||
for (i = 0; i < STACKFRAME_DEPTH; i++) { | |||
uint32_t *start = (uint32_t *)ebp + 2; | |||
cprintf("ebp:0x%08x eip:0x%08x args:", ebp, eip); | |||
for (j = 0; j < 4; j++) { | |||
cprintf("0x%08x", *(start + j)); | |||
if (j != 3) | |||
cprintf(" "); | |||
} | |||
cprintf("\n"); | |||
print_debuginfo(eip - 1); | |||
ebp = *((uint32_t *)ebp); | |||
eip = *((uint32_t *)ebp + 1); | |||
} | |||
} | |||
@ -0,0 +1,12 @@ | |||
#ifndef __KERN_DEBUG_KDEBUG_H__ | |||
#define __KERN_DEBUG_KDEBUG_H__ | |||
#include <defs.h> | |||
#include <trap.h> | |||
void print_kerninfo(void); | |||
void print_stackframe(void); | |||
void print_debuginfo(uintptr_t eip); | |||
#endif /* !__KERN_DEBUG_KDEBUG_H__ */ | |||
@ -0,0 +1,132 @@ | |||
#include <stdio.h> | |||
#include <string.h> | |||
#include <mmu.h> | |||
#include <trap.h> | |||
#include <kmonitor.h> | |||
#include <kdebug.h> | |||
/* * | |||
* Simple command-line kernel monitor useful for controlling the | |||
* kernel and exploring the system interactively. | |||
* */ | |||
struct command { | |||
const char *name; | |||
const char *desc; | |||
// return -1 to force monitor to exit | |||
int(*func)(int argc, char **argv, struct trapframe *tf); | |||
}; | |||
static struct command commands[] = { | |||
{"help", "Display this list of commands.", mon_help}, | |||
{"kerninfo", "Display information about the kernel.", mon_kerninfo}, | |||
{"backtrace", "Print backtrace of stack frame.", mon_backtrace}, | |||
}; | |||
/* return if kernel is panic, in kern/debug/panic.c */ | |||
bool is_kernel_panic(void); | |||
#define NCOMMANDS (sizeof(commands)/sizeof(struct command)) | |||
/***** Kernel monitor command interpreter *****/ | |||
#define MAXARGS 16 | |||
#define WHITESPACE " \t\n\r" | |||
/* parse - parse the command buffer into whitespace-separated arguments */ | |||
static int | |||
parse(char *buf, char **argv) { | |||
int argc = 0; | |||
while (1) { | |||
// find global whitespace | |||
while (*buf != '\0' && strchr(WHITESPACE, *buf) != NULL) { | |||
*buf ++ = '\0'; | |||
} | |||
if (*buf == '\0') { | |||
break; | |||
} | |||
// save and scan past next arg | |||
if (argc == MAXARGS - 1) { | |||
cprintf("Too many arguments (max %d).\n", MAXARGS); | |||
} | |||
argv[argc ++] = buf; | |||
while (*buf != '\0' && strchr(WHITESPACE, *buf) == NULL) { | |||
buf ++; | |||
} | |||
} | |||
return argc; | |||
} | |||
/* * | |||
* runcmd - parse the input string, split it into separated arguments | |||
* and then lookup and invoke some related commands/ | |||
* */ | |||
static int | |||
runcmd(char *buf, struct trapframe *tf) { | |||
char *argv[MAXARGS]; | |||
int argc = parse(buf, argv); | |||
if (argc == 0) { | |||
return 0; | |||
} | |||
int i; | |||
for (i = 0; i < NCOMMANDS; i ++) { | |||
if (strcmp(commands[i].name, argv[0]) == 0) { | |||
return commands[i].func(argc - 1, argv + 1, tf); | |||
} | |||
} | |||
cprintf("Unknown command '%s'\n", argv[0]); | |||
return 0; | |||
} | |||
/***** Implementations of basic kernel monitor commands *****/ | |||
void | |||
kmonitor(struct trapframe *tf) { | |||
cprintf("Welcome to the kernel debug monitor!!\n"); | |||
cprintf("Type 'help' for a list of commands.\n"); | |||
if (tf != NULL) { | |||
print_trapframe(tf); | |||
} | |||
char *buf; | |||
while (1) { | |||
if ((buf = readline("K> ")) != NULL) { | |||
if (runcmd(buf, tf) < 0) { | |||
break; | |||
} | |||
} | |||
} | |||
} | |||
/* mon_help - print the information about mon_* functions */ | |||
int | |||
mon_help(int argc, char **argv, struct trapframe *tf) { | |||
int i; | |||
for (i = 0; i < NCOMMANDS; i ++) { | |||
cprintf("%s - %s\n", commands[i].name, commands[i].desc); | |||
} | |||
return 0; | |||
} | |||
/* * | |||
* mon_kerninfo - call print_kerninfo in kern/debug/kdebug.c to | |||
* print the memory occupancy in kernel. | |||
* */ | |||
int | |||
mon_kerninfo(int argc, char **argv, struct trapframe *tf) { | |||
print_kerninfo(); | |||
return 0; | |||
} | |||
/* * | |||
* mon_backtrace - call print_stackframe in kern/debug/kdebug.c to | |||
* print a backtrace of the stack. | |||
* */ | |||
int | |||
mon_backtrace(int argc, char **argv, struct trapframe *tf) { | |||
print_stackframe(); | |||
return 0; | |||
} | |||
@ -0,0 +1,19 @@ | |||
#ifndef __KERN_DEBUG_MONITOR_H__ | |||
#define __KERN_DEBUG_MONITOR_H__ | |||
#include <trap.h> | |||
void kmonitor(struct trapframe *tf); | |||
int mon_help(int argc, char **argv, struct trapframe *tf); | |||
int mon_kerninfo(int argc, char **argv, struct trapframe *tf); | |||
int mon_backtrace(int argc, char **argv, struct trapframe *tf); | |||
int mon_continue(int argc, char **argv, struct trapframe *tf); | |||
int mon_step(int argc, char **argv, struct trapframe *tf); | |||
int mon_breakpoint(int argc, char **argv, struct trapframe *tf); | |||
int mon_watchpoint(int argc, char **argv, struct trapframe *tf); | |||
int mon_delete_dr(int argc, char **argv, struct trapframe *tf); | |||
int mon_list_dr(int argc, char **argv, struct trapframe *tf); | |||
#endif /* !__KERN_DEBUG_MONITOR_H__ */ | |||
@ -0,0 +1,49 @@ | |||
#include <defs.h> | |||
#include <stdio.h> | |||
#include <intr.h> | |||
#include <kmonitor.h> | |||
static bool is_panic = 0; | |||
/* * | |||
* __panic - __panic is called on unresolvable fatal errors. it prints | |||
* "panic: 'message'", and then enters the kernel monitor. | |||
* */ | |||
void | |||
__panic(const char *file, int line, const char *fmt, ...) { | |||
if (is_panic) { | |||
goto panic_dead; | |||
} | |||
is_panic = 1; | |||
// print the 'message' | |||
va_list ap; | |||
va_start(ap, fmt); | |||
cprintf("kernel panic at %s:%d:\n ", file, line); | |||
vcprintf(fmt, ap); | |||
cprintf("\n"); | |||
va_end(ap); | |||
panic_dead: | |||
intr_disable(); | |||
while (1) { | |||
kmonitor(NULL); | |||
} | |||
} | |||
/* __warn - like panic, but don't */ | |||
void | |||
__warn(const char *file, int line, const char *fmt, ...) { | |||
va_list ap; | |||
va_start(ap, fmt); | |||
cprintf("kernel warning at %s:%d:\n ", file, line); | |||
vcprintf(fmt, ap); | |||
cprintf("\n"); | |||
va_end(ap); | |||
} | |||
bool | |||
is_kernel_panic(void) { | |||
return is_panic; | |||
} | |||
@ -0,0 +1,54 @@ | |||
#ifndef __KERN_DEBUG_STAB_H__ | |||
#define __KERN_DEBUG_STAB_H__ | |||
#include <defs.h> | |||
/* * | |||
* STABS debugging info | |||
* | |||
* The kernel debugger can understand some debugging information in | |||
* the STABS format. For more information on this format, see | |||
* http://sources.redhat.com/gdb/onlinedocs/stabs_toc.html | |||
* | |||
* The constants below define some symbol types used by various debuggers | |||
* and compilers. Kernel uses the N_SO, N_SOL, N_FUN, and N_SLINE types. | |||
* */ | |||
#define N_GSYM 0x20 // global symbol | |||
#define N_FNAME 0x22 // F77 function name | |||
#define N_FUN 0x24 // procedure name | |||
#define N_STSYM 0x26 // data segment variable | |||
#define N_LCSYM 0x28 // bss segment variable | |||
#define N_MAIN 0x2a // main function name | |||
#define N_PC 0x30 // global Pascal symbol | |||
#define N_RSYM 0x40 // register variable | |||
#define N_SLINE 0x44 // text segment line number | |||
#define N_DSLINE 0x46 // data segment line number | |||
#define N_BSLINE 0x48 // bss segment line number | |||
#define N_SSYM 0x60 // structure/union element | |||
#define N_SO 0x64 // main source file name | |||
#define N_LSYM 0x80 // stack variable | |||
#define N_BINCL 0x82 // include file beginning | |||
#define N_SOL 0x84 // included source file name | |||
#define N_PSYM 0xa0 // parameter variable | |||
#define N_EINCL 0xa2 // include file end | |||
#define N_ENTRY 0xa4 // alternate entry point | |||
#define N_LBRAC 0xc0 // left bracket | |||
#define N_EXCL 0xc2 // deleted include file | |||
#define N_RBRAC 0xe0 // right bracket | |||
#define N_BCOMM 0xe2 // begin common | |||
#define N_ECOMM 0xe4 // end common | |||
#define N_ECOML 0xe8 // end common (local name) | |||
#define N_LENG 0xfe // length of preceding entry | |||
/* Entries in the STABS table are formatted as follows. */ | |||
struct stab { | |||
uint32_t n_strx; // index into string table of name | |||
uint8_t n_type; // type of symbol | |||
uint8_t n_other; // misc info (usually empty) | |||
uint16_t n_desc; // description field | |||
uintptr_t n_value; // value of symbol | |||
}; | |||
#endif /* !__KERN_DEBUG_STAB_H__ */ | |||
@ -0,0 +1,45 @@ | |||
#include <x86.h> | |||
#include <trap.h> | |||
#include <stdio.h> | |||
#include <picirq.h> | |||
/* * | |||
* Support for time-related hardware gadgets - the 8253 timer, | |||
* which generates interruptes on IRQ-0. | |||
* */ | |||
#define IO_TIMER1 0x040 // 8253 Timer #1 | |||
/* * | |||
* Frequency of all three count-down timers; (TIMER_FREQ/freq) | |||
* is the appropriate count to generate a frequency of freq Hz. | |||
* */ | |||
#define TIMER_FREQ 1193182 | |||
#define TIMER_DIV(x) ((TIMER_FREQ + (x) / 2) / (x)) | |||
#define TIMER_MODE (IO_TIMER1 + 3) // timer mode port | |||
#define TIMER_SEL0 0x00 // select counter 0 | |||
#define TIMER_RATEGEN 0x04 // mode 2, rate generator | |||
#define TIMER_16BIT 0x30 // r/w counter 16 bits, LSB first | |||
volatile size_t ticks; | |||
/* * | |||
* clock_init - initialize 8253 clock to interrupt 100 times per second, | |||
* and then enable IRQ_TIMER. | |||
* */ | |||
void | |||
clock_init(void) { | |||
// set 8253 timer-chip | |||
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT); | |||
outb(IO_TIMER1, TIMER_DIV(100) % 256); | |||
outb(IO_TIMER1, TIMER_DIV(100) / 256); | |||
// initialize time counter 'ticks' to zero | |||
ticks = 0; | |||
cprintf("++ setup timer interrupts\n"); | |||
pic_enable(IRQ_TIMER); | |||
} | |||
@ -0,0 +1,11 @@ | |||
#ifndef __KERN_DRIVER_CLOCK_H__ | |||
#define __KERN_DRIVER_CLOCK_H__ | |||
#include <defs.h> | |||
extern volatile size_t ticks; | |||
void clock_init(void); | |||
#endif /* !__KERN_DRIVER_CLOCK_H__ */ | |||
@ -0,0 +1,465 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
#include <kbdreg.h> | |||
#include <picirq.h> | |||
#include <trap.h> | |||
#include <memlayout.h> | |||
#include <sync.h> | |||
/* stupid I/O delay routine necessitated by historical PC design flaws */ | |||
static void | |||
delay(void) { | |||
inb(0x84); | |||
inb(0x84); | |||
inb(0x84); | |||
inb(0x84); | |||
} | |||
/***** Serial I/O code *****/ | |||
#define COM1 0x3F8 | |||
#define COM_RX 0 // In: Receive buffer (DLAB=0) | |||
#define COM_TX 0 // Out: Transmit buffer (DLAB=0) | |||
#define COM_DLL 0 // Out: Divisor Latch Low (DLAB=1) | |||
#define COM_DLM 1 // Out: Divisor Latch High (DLAB=1) | |||
#define COM_IER 1 // Out: Interrupt Enable Register | |||
#define COM_IER_RDI 0x01 // Enable receiver data interrupt | |||
#define COM_IIR 2 // In: Interrupt ID Register | |||
#define COM_FCR 2 // Out: FIFO Control Register | |||
#define COM_LCR 3 // Out: Line Control Register | |||
#define COM_LCR_DLAB 0x80 // Divisor latch access bit | |||
#define COM_LCR_WLEN8 0x03 // Wordlength: 8 bits | |||
#define COM_MCR 4 // Out: Modem Control Register | |||
#define COM_MCR_RTS 0x02 // RTS complement | |||
#define COM_MCR_DTR 0x01 // DTR complement | |||
#define COM_MCR_OUT2 0x08 // Out2 complement | |||
#define COM_LSR 5 // In: Line Status Register | |||
#define COM_LSR_DATA 0x01 // Data available | |||
#define COM_LSR_TXRDY 0x20 // Transmit buffer avail | |||
#define COM_LSR_TSRE 0x40 // Transmitter off | |||
#define MONO_BASE 0x3B4 | |||
#define MONO_BUF 0xB0000 | |||
#define CGA_BASE 0x3D4 | |||
#define CGA_BUF 0xB8000 | |||
#define CRT_ROWS 25 | |||
#define CRT_COLS 80 | |||
#define CRT_SIZE (CRT_ROWS * CRT_COLS) | |||
#define LPTPORT 0x378 | |||
static uint16_t *crt_buf; | |||
static uint16_t crt_pos; | |||
static uint16_t addr_6845; | |||
/* TEXT-mode CGA/VGA display output */ | |||
static void | |||
cga_init(void) { | |||
volatile uint16_t *cp = (uint16_t *)(CGA_BUF + KERNBASE); | |||
uint16_t was = *cp; | |||
*cp = (uint16_t) 0xA55A; | |||
if (*cp != 0xA55A) { | |||
cp = (uint16_t*)(MONO_BUF + KERNBASE); | |||
addr_6845 = MONO_BASE; | |||
} else { | |||
*cp = was; | |||
addr_6845 = CGA_BASE; | |||
} | |||
// Extract cursor location | |||
uint32_t pos; | |||
outb(addr_6845, 14); | |||
pos = inb(addr_6845 + 1) << 8; | |||
outb(addr_6845, 15); | |||
pos |= inb(addr_6845 + 1); | |||
crt_buf = (uint16_t*) cp; | |||
crt_pos = pos; | |||
} | |||
static bool serial_exists = 0; | |||
static void | |||
serial_init(void) { | |||
// Turn off the FIFO | |||
outb(COM1 + COM_FCR, 0); | |||
// Set speed; requires DLAB latch | |||
outb(COM1 + COM_LCR, COM_LCR_DLAB); | |||
outb(COM1 + COM_DLL, (uint8_t) (115200 / 9600)); | |||
outb(COM1 + COM_DLM, 0); | |||
// 8 data bits, 1 stop bit, parity off; turn off DLAB latch | |||
outb(COM1 + COM_LCR, COM_LCR_WLEN8 & ~COM_LCR_DLAB); | |||
// No modem controls | |||
outb(COM1 + COM_MCR, 0); | |||
// Enable rcv interrupts | |||
outb(COM1 + COM_IER, COM_IER_RDI); | |||
// Clear any preexisting overrun indications and interrupts | |||
// Serial port doesn't exist if COM_LSR returns 0xFF | |||
serial_exists = (inb(COM1 + COM_LSR) != 0xFF); | |||
(void) inb(COM1+COM_IIR); | |||
(void) inb(COM1+COM_RX); | |||
if (serial_exists) { | |||
pic_enable(IRQ_COM1); | |||
} | |||
} | |||
static void | |||
lpt_putc_sub(int c) { | |||
int i; | |||
for (i = 0; !(inb(LPTPORT + 1) & 0x80) && i < 12800; i ++) { | |||
delay(); | |||
} | |||
outb(LPTPORT + 0, c); | |||
outb(LPTPORT + 2, 0x08 | 0x04 | 0x01); | |||
outb(LPTPORT + 2, 0x08); | |||
} | |||
/* lpt_putc - copy console output to parallel port */ | |||
static void | |||
lpt_putc(int c) { | |||
if (c != '\b') { | |||
lpt_putc_sub(c); | |||
} | |||
else { | |||
lpt_putc_sub('\b'); | |||
lpt_putc_sub(' '); | |||
lpt_putc_sub('\b'); | |||
} | |||
} | |||
/* cga_putc - print character to console */ | |||
static void | |||
cga_putc(int c) { | |||
// set black on white | |||
if (!(c & ~0xFF)) { | |||
c |= 0x0700; | |||
} | |||
switch (c & 0xff) { | |||
case '\b': | |||
if (crt_pos > 0) { | |||
crt_pos --; | |||
crt_buf[crt_pos] = (c & ~0xff) | ' '; | |||
} | |||
break; | |||
case '\n': | |||
crt_pos += CRT_COLS; | |||
case '\r': | |||
crt_pos -= (crt_pos % CRT_COLS); | |||
break; | |||
default: | |||
crt_buf[crt_pos ++] = c; // write the character | |||
break; | |||
} | |||
// What is the purpose of this? | |||
if (crt_pos >= CRT_SIZE) { | |||
int i; | |||
memmove(crt_buf, crt_buf + CRT_COLS, (CRT_SIZE - CRT_COLS) * sizeof(uint16_t)); | |||
for (i = CRT_SIZE - CRT_COLS; i < CRT_SIZE; i ++) { | |||
crt_buf[i] = 0x0700 | ' '; | |||
} | |||
crt_pos -= CRT_COLS; | |||
} | |||
// move that little blinky thing | |||
outb(addr_6845, 14); | |||
outb(addr_6845 + 1, crt_pos >> 8); | |||
outb(addr_6845, 15); | |||
outb(addr_6845 + 1, crt_pos); | |||
} | |||
static void | |||
serial_putc_sub(int c) { | |||
int i; | |||
for (i = 0; !(inb(COM1 + COM_LSR) & COM_LSR_TXRDY) && i < 12800; i ++) { | |||
delay(); | |||
} | |||
outb(COM1 + COM_TX, c); | |||
} | |||
/* serial_putc - print character to serial port */ | |||
static void | |||
serial_putc(int c) { | |||
if (c != '\b') { | |||
serial_putc_sub(c); | |||
} | |||
else { | |||
serial_putc_sub('\b'); | |||
serial_putc_sub(' '); | |||
serial_putc_sub('\b'); | |||
} | |||
} | |||
/* * | |||
* Here we manage the console input buffer, where we stash characters | |||
* received from the keyboard or serial port whenever the corresponding | |||
* interrupt occurs. | |||
* */ | |||
#define CONSBUFSIZE 512 | |||
static struct { | |||
uint8_t buf[CONSBUFSIZE]; | |||
uint32_t rpos; | |||
uint32_t wpos; | |||
} cons; | |||
/* * | |||
* cons_intr - called by device interrupt routines to feed input | |||
* characters into the circular console input buffer. | |||
* */ | |||
static void | |||
cons_intr(int (*proc)(void)) { | |||
int c; | |||
while ((c = (*proc)()) != -1) { | |||
if (c != 0) { | |||
cons.buf[cons.wpos ++] = c; | |||
if (cons.wpos == CONSBUFSIZE) { | |||
cons.wpos = 0; | |||
} | |||
} | |||
} | |||
} | |||
/* serial_proc_data - get data from serial port */ | |||
static int | |||
serial_proc_data(void) { | |||
if (!(inb(COM1 + COM_LSR) & COM_LSR_DATA)) { | |||
return -1; | |||
} | |||
int c = inb(COM1 + COM_RX); | |||
if (c == 127) { | |||
c = '\b'; | |||
} | |||
return c; | |||
} | |||
/* serial_intr - try to feed input characters from serial port */ | |||
void | |||
serial_intr(void) { | |||
if (serial_exists) { | |||
cons_intr(serial_proc_data); | |||
} | |||
} | |||
/***** Keyboard input code *****/ | |||
#define NO 0 | |||
#define SHIFT (1<<0) | |||
#define CTL (1<<1) | |||
#define ALT (1<<2) | |||
#define CAPSLOCK (1<<3) | |||
#define NUMLOCK (1<<4) | |||
#define SCROLLLOCK (1<<5) | |||
#define E0ESC (1<<6) | |||
static uint8_t shiftcode[256] = { | |||
[0x1D] CTL, | |||
[0x2A] SHIFT, | |||
[0x36] SHIFT, | |||
[0x38] ALT, | |||
[0x9D] CTL, | |||
[0xB8] ALT | |||
}; | |||
static uint8_t togglecode[256] = { | |||
[0x3A] CAPSLOCK, | |||
[0x45] NUMLOCK, | |||
[0x46] SCROLLLOCK | |||
}; | |||
static uint8_t normalmap[256] = { | |||
NO, 0x1B, '1', '2', '3', '4', '5', '6', // 0x00 | |||
'7', '8', '9', '0', '-', '=', '\b', '\t', | |||
'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', // 0x10 | |||
'o', 'p', '[', ']', '\n', NO, 'a', 's', | |||
'd', 'f', 'g', 'h', 'j', 'k', 'l', ';', // 0x20 | |||
'\'', '`', NO, '\\', 'z', 'x', 'c', 'v', | |||
'b', 'n', 'm', ',', '.', '/', NO, '*', // 0x30 | |||
NO, ' ', NO, NO, NO, NO, NO, NO, | |||
NO, NO, NO, NO, NO, NO, NO, '7', // 0x40 | |||
'8', '9', '-', '4', '5', '6', '+', '1', | |||
'2', '3', '0', '.', NO, NO, NO, NO, // 0x50 | |||
[0xC7] KEY_HOME, [0x9C] '\n' /*KP_Enter*/, | |||
[0xB5] '/' /*KP_Div*/, [0xC8] KEY_UP, | |||
[0xC9] KEY_PGUP, [0xCB] KEY_LF, | |||
[0xCD] KEY_RT, [0xCF] KEY_END, | |||
[0xD0] KEY_DN, [0xD1] KEY_PGDN, | |||
[0xD2] KEY_INS, [0xD3] KEY_DEL | |||
}; | |||
static uint8_t shiftmap[256] = { | |||
NO, 033, '!', '@', '#', '$', '%', '^', // 0x00 | |||
'&', '*', '(', ')', '_', '+', '\b', '\t', | |||
'Q', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', // 0x10 | |||
'O', 'P', '{', '}', '\n', NO, 'A', 'S', | |||
'D', 'F', 'G', 'H', 'J', 'K', 'L', ':', // 0x20 | |||
'"', '~', NO, '|', 'Z', 'X', 'C', 'V', | |||
'B', 'N', 'M', '<', '>', '?', NO, '*', // 0x30 | |||
NO, ' ', NO, NO, NO, NO, NO, NO, | |||
NO, NO, NO, NO, NO, NO, NO, '7', // 0x40 | |||
'8', '9', '-', '4', '5', '6', '+', '1', | |||
'2', '3', '0', '.', NO, NO, NO, NO, // 0x50 | |||
[0xC7] KEY_HOME, [0x9C] '\n' /*KP_Enter*/, | |||
[0xB5] '/' /*KP_Div*/, [0xC8] KEY_UP, | |||
[0xC9] KEY_PGUP, [0xCB] KEY_LF, | |||
[0xCD] KEY_RT, [0xCF] KEY_END, | |||
[0xD0] KEY_DN, [0xD1] KEY_PGDN, | |||
[0xD2] KEY_INS, [0xD3] KEY_DEL | |||
}; | |||
#define C(x) (x - '@') | |||
static uint8_t ctlmap[256] = { | |||
NO, NO, NO, NO, NO, NO, NO, NO, | |||
NO, NO, NO, NO, NO, NO, NO, NO, | |||
C('Q'), C('W'), C('E'), C('R'), C('T'), C('Y'), C('U'), C('I'), | |||
C('O'), C('P'), NO, NO, '\r', NO, C('A'), C('S'), | |||
C('D'), C('F'), C('G'), C('H'), C('J'), C('K'), C('L'), NO, | |||
NO, NO, NO, C('\\'), C('Z'), C('X'), C('C'), C('V'), | |||
C('B'), C('N'), C('M'), NO, NO, C('/'), NO, NO, | |||
[0x97] KEY_HOME, | |||
[0xB5] C('/'), [0xC8] KEY_UP, | |||
[0xC9] KEY_PGUP, [0xCB] KEY_LF, | |||
[0xCD] KEY_RT, [0xCF] KEY_END, | |||
[0xD0] KEY_DN, [0xD1] KEY_PGDN, | |||
[0xD2] KEY_INS, [0xD3] KEY_DEL | |||
}; | |||
static uint8_t *charcode[4] = { | |||
normalmap, | |||
shiftmap, | |||
ctlmap, | |||
ctlmap | |||
}; | |||
/* * | |||
* kbd_proc_data - get data from keyboard | |||
* | |||
* The kbd_proc_data() function gets data from the keyboard. | |||
* If we finish a character, return it, else 0. And return -1 if no data. | |||
* */ | |||
static int | |||
kbd_proc_data(void) { | |||
int c; | |||
uint8_t data; | |||
static uint32_t shift; | |||
if ((inb(KBSTATP) & KBS_DIB) == 0) { | |||
return -1; | |||
} | |||
data = inb(KBDATAP); | |||
if (data == 0xE0) { | |||
// E0 escape character | |||
shift |= E0ESC; | |||
return 0; | |||
} else if (data & 0x80) { | |||
// Key released | |||
data = (shift & E0ESC ? data : data & 0x7F); | |||
shift &= ~(shiftcode[data] | E0ESC); | |||
return 0; | |||
} else if (shift & E0ESC) { | |||
// Last character was an E0 escape; or with 0x80 | |||
data |= 0x80; | |||
shift &= ~E0ESC; | |||
} | |||
shift |= shiftcode[data]; | |||
shift ^= togglecode[data]; | |||
c = charcode[shift & (CTL | SHIFT)][data]; | |||
if (shift & CAPSLOCK) { | |||
if ('a' <= c && c <= 'z') | |||
c += 'A' - 'a'; | |||
else if ('A' <= c && c <= 'Z') | |||
c += 'a' - 'A'; | |||
} | |||
// Process special keys | |||
// Ctrl-Alt-Del: reboot | |||
if (!(~shift & (CTL | ALT)) && c == KEY_DEL) { | |||
cprintf("Rebooting!\n"); | |||
outb(0x92, 0x3); // courtesy of Chris Frost | |||
} | |||
return c; | |||
} | |||
/* kbd_intr - try to feed input characters from keyboard */ | |||
static void | |||
kbd_intr(void) { | |||
cons_intr(kbd_proc_data); | |||
} | |||
static void | |||
kbd_init(void) { | |||
// drain the kbd buffer | |||
kbd_intr(); | |||
pic_enable(IRQ_KBD); | |||
} | |||
/* cons_init - initializes the console devices */ | |||
void | |||
cons_init(void) { | |||
cga_init(); | |||
serial_init(); | |||
kbd_init(); | |||
if (!serial_exists) { | |||
cprintf("serial port does not exist!!\n"); | |||
} | |||
} | |||
/* cons_putc - print a single character @c to console devices */ | |||
void | |||
cons_putc(int c) { | |||
bool intr_flag; | |||
local_intr_save(intr_flag); | |||
{ | |||
lpt_putc(c); | |||
cga_putc(c); | |||
serial_putc(c); | |||
} | |||
local_intr_restore(intr_flag); | |||
} | |||
/* * | |||
* cons_getc - return the next input character from console, | |||
* or 0 if none waiting. | |||
* */ | |||
int | |||
cons_getc(void) { | |||
int c = 0; | |||
bool intr_flag; | |||
local_intr_save(intr_flag); | |||
{ | |||
// poll for any pending input characters, | |||
// so that this function works even when interrupts are disabled | |||
// (e.g., when called from the kernel monitor). | |||
serial_intr(); | |||
kbd_intr(); | |||
// grab the next character from the input buffer. | |||
if (cons.rpos != cons.wpos) { | |||
c = cons.buf[cons.rpos ++]; | |||
if (cons.rpos == CONSBUFSIZE) { | |||
cons.rpos = 0; | |||
} | |||
} | |||
} | |||
local_intr_restore(intr_flag); | |||
return c; | |||
} | |||
@ -0,0 +1,11 @@ | |||
#ifndef __KERN_DRIVER_CONSOLE_H__ | |||
#define __KERN_DRIVER_CONSOLE_H__ | |||
void cons_init(void); | |||
void cons_putc(int c); | |||
int cons_getc(void); | |||
void serial_intr(void); | |||
void kbd_intr(void); | |||
#endif /* !__KERN_DRIVER_CONSOLE_H__ */ | |||
@ -0,0 +1,15 @@ | |||
#include <x86.h> | |||
#include <intr.h> | |||
/* intr_enable - enable irq interrupt */ | |||
void | |||
intr_enable(void) { | |||
sti(); | |||
} | |||
/* intr_disable - disable irq interrupt */ | |||
void | |||
intr_disable(void) { | |||
cli(); | |||
} | |||
@ -0,0 +1,8 @@ | |||
#ifndef __KERN_DRIVER_INTR_H__ | |||
#define __KERN_DRIVER_INTR_H__ | |||
void intr_enable(void); | |||
void intr_disable(void); | |||
#endif /* !__KERN_DRIVER_INTR_H__ */ | |||
@ -0,0 +1,84 @@ | |||
#ifndef __KERN_DRIVER_KBDREG_H__ | |||
#define __KERN_DRIVER_KBDREG_H__ | |||
// Special keycodes | |||
#define KEY_HOME 0xE0 | |||
#define KEY_END 0xE1 | |||
#define KEY_UP 0xE2 | |||
#define KEY_DN 0xE3 | |||
#define KEY_LF 0xE4 | |||
#define KEY_RT 0xE5 | |||
#define KEY_PGUP 0xE6 | |||
#define KEY_PGDN 0xE7 | |||
#define KEY_INS 0xE8 | |||
#define KEY_DEL 0xE9 | |||
/* This is i8042reg.h + kbdreg.h from NetBSD. */ | |||
#define KBSTATP 0x64 // kbd controller status port(I) | |||
#define KBS_DIB 0x01 // kbd data in buffer | |||
#define KBS_IBF 0x02 // kbd input buffer low | |||
#define KBS_WARM 0x04 // kbd input buffer low | |||
#define BS_OCMD 0x08 // kbd output buffer has command | |||
#define KBS_NOSEC 0x10 // kbd security lock not engaged | |||
#define KBS_TERR 0x20 // kbd transmission error | |||
#define KBS_RERR 0x40 // kbd receive error | |||
#define KBS_PERR 0x80 // kbd parity error | |||
#define KBCMDP 0x64 // kbd controller port(O) | |||
#define KBC_RAMREAD 0x20 // read from RAM | |||
#define KBC_RAMWRITE 0x60 // write to RAM | |||
#define KBC_AUXDISABLE 0xa7 // disable auxiliary port | |||
#define KBC_AUXENABLE 0xa8 // enable auxiliary port | |||
#define KBC_AUXTEST 0xa9 // test auxiliary port | |||
#define KBC_KBDECHO 0xd2 // echo to keyboard port | |||
#define KBC_AUXECHO 0xd3 // echo to auxiliary port | |||
#define KBC_AUXWRITE 0xd4 // write to auxiliary port | |||
#define KBC_SELFTEST 0xaa // start self-test | |||
#define KBC_KBDTEST 0xab // test keyboard port | |||
#define KBC_KBDDISABLE 0xad // disable keyboard port | |||
#define KBC_KBDENABLE 0xae // enable keyboard port | |||
#define KBC_PULSE0 0xfe // pulse output bit 0 | |||
#define KBC_PULSE1 0xfd // pulse output bit 1 | |||
#define KBC_PULSE2 0xfb // pulse output bit 2 | |||
#define KBC_PULSE3 0xf7 // pulse output bit 3 | |||
#define KBDATAP 0x60 // kbd data port(I) | |||
#define KBOUTP 0x60 // kbd data port(O) | |||
#define K_RDCMDBYTE 0x20 | |||
#define K_LDCMDBYTE 0x60 | |||
#define KC8_TRANS 0x40 // convert to old scan codes | |||
#define KC8_MDISABLE 0x20 // disable mouse | |||
#define KC8_KDISABLE 0x10 // disable keyboard | |||
#define KC8_IGNSEC 0x08 // ignore security lock | |||
#define KC8_CPU 0x04 // exit from protected mode reset | |||
#define KC8_MENABLE 0x02 // enable mouse interrupt | |||
#define KC8_KENABLE 0x01 // enable keyboard interrupt | |||
#define CMDBYTE (KC8_TRANS|KC8_CPU|KC8_MENABLE|KC8_KENABLE) | |||
/* keyboard commands */ | |||
#define KBC_RESET 0xFF // reset the keyboard | |||
#define KBC_RESEND 0xFE // request the keyboard resend the last byte | |||
#define KBC_SETDEFAULT 0xF6 // resets keyboard to its power-on defaults | |||
#define KBC_DISABLE 0xF5 // as per KBC_SETDEFAULT, but also disable key scanning | |||
#define KBC_ENABLE 0xF4 // enable key scanning | |||
#define KBC_TYPEMATIC 0xF3 // set typematic rate and delay | |||
#define KBC_SETTABLE 0xF0 // set scancode translation table | |||
#define KBC_MODEIND 0xED // set mode indicators(i.e. LEDs) | |||
#define KBC_ECHO 0xEE // request an echo from the keyboard | |||
/* keyboard responses */ | |||
#define KBR_EXTENDED 0xE0 // extended key sequence | |||
#define KBR_RESEND 0xFE // needs resend of command | |||
#define KBR_ACK 0xFA // received a valid command | |||
#define KBR_OVERRUN 0x00 // flooded | |||
#define KBR_FAILURE 0xFD // diagnosic failure | |||
#define KBR_BREAK 0xF0 // break code prefix - sent on key release | |||
#define KBR_RSTDONE 0xAA // reset complete | |||
#define KBR_ECHO 0xEE // echo response | |||
#endif /* !__KERN_DRIVER_KBDREG_H__ */ | |||
@ -0,0 +1,86 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <picirq.h> | |||
// I/O Addresses of the two programmable interrupt controllers | |||
#define IO_PIC1 0x20 // Master (IRQs 0-7) | |||
#define IO_PIC2 0xA0 // Slave (IRQs 8-15) | |||
#define IRQ_SLAVE 2 // IRQ at which slave connects to master | |||
// Current IRQ mask. | |||
// Initial IRQ mask has interrupt 2 enabled (for slave 8259A). | |||
static uint16_t irq_mask = 0xFFFF & ~(1 << IRQ_SLAVE); | |||
static bool did_init = 0; | |||
static void | |||
pic_setmask(uint16_t mask) { | |||
irq_mask = mask; | |||
if (did_init) { | |||
outb(IO_PIC1 + 1, mask); | |||
outb(IO_PIC2 + 1, mask >> 8); | |||
} | |||
} | |||
void | |||
pic_enable(unsigned int irq) { | |||
pic_setmask(irq_mask & ~(1 << irq)); | |||
} | |||
/* pic_init - initialize the 8259A interrupt controllers */ | |||
void | |||
pic_init(void) { | |||
did_init = 1; | |||
// mask all interrupts | |||
outb(IO_PIC1 + 1, 0xFF); | |||
outb(IO_PIC2 + 1, 0xFF); | |||
// Set up master (8259A-1) | |||
// ICW1: 0001g0hi | |||
// g: 0 = edge triggering, 1 = level triggering | |||
// h: 0 = cascaded PICs, 1 = master only | |||
// i: 0 = no ICW4, 1 = ICW4 required | |||
outb(IO_PIC1, 0x11); | |||
// ICW2: Vector offset | |||
outb(IO_PIC1 + 1, IRQ_OFFSET); | |||
// ICW3: (master PIC) bit mask of IR lines connected to slaves | |||
// (slave PIC) 3-bit # of slave's connection to master | |||
outb(IO_PIC1 + 1, 1 << IRQ_SLAVE); | |||
// ICW4: 000nbmap | |||
// n: 1 = special fully nested mode | |||
// b: 1 = buffered mode | |||
// m: 0 = slave PIC, 1 = master PIC | |||
// (ignored when b is 0, as the master/slave role | |||
// can be hardwired). | |||
// a: 1 = Automatic EOI mode | |||
// p: 0 = MCS-80/85 mode, 1 = intel x86 mode | |||
outb(IO_PIC1 + 1, 0x3); | |||
// Set up slave (8259A-2) | |||
outb(IO_PIC2, 0x11); // ICW1 | |||
outb(IO_PIC2 + 1, IRQ_OFFSET + 8); // ICW2 | |||
outb(IO_PIC2 + 1, IRQ_SLAVE); // ICW3 | |||
// NB Automatic EOI mode doesn't tend to work on the slave. | |||
// Linux source code says it's "to be investigated". | |||
outb(IO_PIC2 + 1, 0x3); // ICW4 | |||
// OCW3: 0ef01prs | |||
// ef: 0x = NOP, 10 = clear specific mask, 11 = set specific mask | |||
// p: 0 = no polling, 1 = polling mode | |||
// rs: 0x = NOP, 10 = read IRR, 11 = read ISR | |||
outb(IO_PIC1, 0x68); // clear specific mask | |||
outb(IO_PIC1, 0x0a); // read IRR by default | |||
outb(IO_PIC2, 0x68); // OCW3 | |||
outb(IO_PIC2, 0x0a); // OCW3 | |||
if (irq_mask != 0xFFFF) { | |||
pic_setmask(irq_mask); | |||
} | |||
} | |||
@ -0,0 +1,10 @@ | |||
#ifndef __KERN_DRIVER_PICIRQ_H__ | |||
#define __KERN_DRIVER_PICIRQ_H__ | |||
void pic_init(void); | |||
void pic_enable(unsigned int irq); | |||
#define IRQ_OFFSET 32 | |||
#endif /* !__KERN_DRIVER_PICIRQ_H__ */ | |||
@ -0,0 +1,49 @@ | |||
#include <mmu.h> | |||
#include <memlayout.h> | |||
#define REALLOC(x) (x - KERNBASE) | |||
.text | |||
.globl kern_entry | |||
kern_entry: | |||
# reload temperate gdt (second time) to remap all physical memory | |||
# virtual_addr 0~4G=linear_addr&physical_addr -KERNBASE~4G-KERNBASE | |||
lgdt REALLOC(__gdtdesc) | |||
movl $KERNEL_DS, %eax | |||
movw %ax, %ds | |||
movw %ax, %es | |||
movw %ax, %ss | |||
ljmp $KERNEL_CS, $relocated | |||
relocated: | |||
# set ebp, esp | |||
movl $0x0, %ebp | |||
# the kernel stack region is from bootstack -- bootstacktop, | |||
# the kernel stack size is KSTACKSIZE (8KB)defined in memlayout.h | |||
movl $bootstacktop, %esp | |||
# now kernel stack is ready , call the first C function | |||
call kern_init | |||
# should never get here | |||
spin: | |||
jmp spin | |||
.data | |||
.align PGSIZE | |||
.globl bootstack | |||
bootstack: | |||
.space KSTACKSIZE | |||
.globl bootstacktop | |||
bootstacktop: | |||
.align 4 | |||
__gdt: | |||
SEG_NULL | |||
SEG_ASM(STA_X | STA_R, - KERNBASE, 0xFFFFFFFF) # code segment | |||
SEG_ASM(STA_W, - KERNBASE, 0xFFFFFFFF) # data segment | |||
__gdtdesc: | |||
.word 0x17 # sizeof(__gdt) - 1 | |||
.long REALLOC(__gdt) | |||
@ -0,0 +1,39 @@ | |||
#include <defs.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
#include <console.h> | |||
#include <kdebug.h> | |||
#include <picirq.h> | |||
#include <trap.h> | |||
#include <clock.h> | |||
#include <intr.h> | |||
#include <pmm.h> | |||
#include <proc.h> | |||
#include <kmonitor.h> | |||
int kern_init(void) __attribute__((noreturn)); | |||
void grade_backtrace(void); | |||
int | |||
kern_init(void) { | |||
extern char edata[], end[]; | |||
memset(edata, 0, end - edata); | |||
cons_init(); // init the console | |||
const char *message = "(THU.CST) os is loading ..."; | |||
cprintf("%s\n\n", message); | |||
print_kerninfo(); | |||
pmm_init(); // init physical memory management | |||
pic_init(); // init interrupt controller | |||
idt_init(); // init interrupt descriptor table | |||
proc_init(); // init process table | |||
clock_init(); // init clock interrupt | |||
intr_enable(); // enable irq interrupt | |||
schedule(); //let init proc run | |||
while (do_wait(1, NULL) == 0) { | |||
schedule(); | |||
} | |||
} |
@ -0,0 +1,50 @@ | |||
#include <stdio.h> | |||
#define BUFSIZE 1024 | |||
static char buf[BUFSIZE]; | |||
/* * | |||
* readline - get a line from stdin | |||
* @prompt: the string to be written to stdout | |||
* | |||
* The readline() function will write the input string @prompt to | |||
* stdout first. If the @prompt is NULL or the empty string, | |||
* no prompt is issued. | |||
* | |||
* This function will keep on reading characters and saving them to buffer | |||
* 'buf' until '\n' or '\r' is encountered. | |||
* | |||
* Note that, if the length of string that will be read is longer than | |||
* buffer size, the end of string will be discarded. | |||
* | |||
* The readline() function returns the text of the line read. If some errors | |||
* are happened, NULL is returned. The return value is a global variable, | |||
* thus it should be copied before it is used. | |||
* */ | |||
char * | |||
readline(const char *prompt) { | |||
if (prompt != NULL) { | |||
cprintf("%s", prompt); | |||
} | |||
int i = 0, c; | |||
while (1) { | |||
c = getchar(); | |||
if (c < 0) { | |||
return NULL; | |||
} | |||
else if (c >= ' ' && i < BUFSIZE - 1) { | |||
cputchar(c); | |||
buf[i ++] = c; | |||
} | |||
else if (c == '\b' && i > 0) { | |||
cputchar(c); | |||
i --; | |||
} | |||
else if (c == '\n' || c == '\r') { | |||
cputchar(c); | |||
buf[i] = '\0'; | |||
return buf; | |||
} | |||
} | |||
} | |||
@ -0,0 +1,78 @@ | |||
#include <defs.h> | |||
#include <stdio.h> | |||
#include <console.h> | |||
/* HIGH level console I/O */ | |||
/* * | |||
* cputch - writes a single character @c to stdout, and it will | |||
* increace the value of counter pointed by @cnt. | |||
* */ | |||
static void | |||
cputch(int c, int *cnt) { | |||
cons_putc(c); | |||
(*cnt) ++; | |||
} | |||
/* * | |||
* vcprintf - format a string and writes it to stdout | |||
* | |||
* The return value is the number of characters which would be | |||
* written to stdout. | |||
* | |||
* Call this function if you are already dealing with a va_list. | |||
* Or you probably want cprintf() instead. | |||
* */ | |||
int | |||
vcprintf(const char *fmt, va_list ap) { | |||
int cnt = 0; | |||
vprintfmt((void*)cputch, &cnt, fmt, ap); | |||
return cnt; | |||
} | |||
/* * | |||
* cprintf - formats a string and writes it to stdout | |||
* | |||
* The return value is the number of characters which would be | |||
* written to stdout. | |||
* */ | |||
int | |||
cprintf(const char *fmt, ...) { | |||
va_list ap; | |||
int cnt; | |||
va_start(ap, fmt); | |||
cnt = vcprintf(fmt, ap); | |||
va_end(ap); | |||
return cnt; | |||
} | |||
/* cputchar - writes a single character to stdout */ | |||
void | |||
cputchar(int c) { | |||
cons_putc(c); | |||
} | |||
/* * | |||
* cputs- writes the string pointed by @str to stdout and | |||
* appends a newline character. | |||
* */ | |||
int | |||
cputs(const char *str) { | |||
int cnt = 0; | |||
char c; | |||
while ((c = *str ++) != '\0') { | |||
cputch(c, &cnt); | |||
} | |||
cputch('\n', &cnt); | |||
return cnt; | |||
} | |||
/* getchar - reads a single non-zero character from stdin */ | |||
int | |||
getchar(void) { | |||
int c; | |||
while ((c = cons_getc()) == 0) | |||
/* do nothing */; | |||
return c; | |||
} | |||
@ -0,0 +1,268 @@ | |||
#include <pmm.h> | |||
#include <list.h> | |||
#include <string.h> | |||
#include <default_pmm.h> | |||
/* In the first fit algorithm, the allocator keeps a list of free blocks (known as the free list) and, | |||
on receiving a request for memory, scans along the list for the first block that is large enough to | |||
satisfy the request. If the chosen block is significantly larger than that requested, then it is | |||
usually split, and the remainder added to the list as another free block. | |||
Please see Page 196~198, Section 8.2 of Yan Wei Ming's chinese book "Data Structure -- C programming language" | |||
*/ | |||
// LAB2 EXERCISE 1: 2012011346 | |||
// you should rewrite functions: default_init,default_init_memmap,default_alloc_pages, default_free_pages. | |||
/* | |||
* Details of FFMA | |||
* (1) Prepare: In order to implement the First-Fit Mem Alloc (FFMA), we should manage the free mem block use some list. | |||
* The struct free_area_t is used for the management of free mem blocks. At first you should | |||
* be familiar to the struct list in list.h. struct list is a simple doubly linked list implementation. | |||
* You should know howto USE: list_init, list_add(list_add_after), list_add_before, list_del, list_next, list_prev | |||
* Another tricky method is to transform a general list struct to a special struct (such as struct page): | |||
* you can find some MACRO: le2page (in memlayout.h), (in future labs: le2vma (in vmm.h), le2proc (in proc.h),etc.) | |||
* (2) default_init: you can reuse the demo default_init fun to init the free_list and set nr_free to 0. | |||
* free_list is used to record the free mem blocks. nr_free is the total number for free mem blocks. | |||
* (3) default_init_memmap: CALL GRAPH: kern_init --> pmm_init-->page_init-->init_memmap--> pmm_manager->init_memmap | |||
* This fun is used to init a free block (with parameter: addr_base, page_number). | |||
* First you should init each page (in memlayout.h) in this free block, include: | |||
* p->flags should be set bit PG_property (means this page is valid. In pmm_init fun (in pmm.c), | |||
* the bit PG_reserved is setted in p->flags) | |||
* if this page is free and is not the first page of free block, p->property should be set to 0. | |||
* if this page is free and is the first page of free block, p->property should be set to total num of block. | |||
* p->ref should be 0, because now p is free and no reference. | |||
* We can use p->page_link to link this page to free_list, (such as: list_add_before(&free_list, &(p->page_link)); ) | |||
* Finally, we should sum the number of free mem block: nr_free+=n | |||
* (4) default_alloc_pages: search find a first free block (block size >=n) in free list and reszie the free block, return the addr | |||
* of malloced block. | |||
* (4.1) So you should search freelist like this: | |||
* list_entry_t le = &free_list; | |||
* while((le=list_next(le)) != &free_list) { | |||
* .... | |||
* (4.1.1) In while loop, get the struct page and check the p->property (record the num of free block) >=n? | |||
* struct Page *p = le2page(le, page_link); | |||
* if(p->property >= n){ ... | |||
* (4.1.2) If we find this p, then it' means we find a free block(block size >=n), and the first n pages can be malloced. | |||
* Some flag bits of this page should be setted: PG_reserved =1, PG_property =0 | |||
* unlink the pages from free_list | |||
* (4.1.2.1) If (p->property >n), we should re-caluclate number of the the rest of this free block, | |||
* (such as: le2page(le,page_link))->property = p->property - n;) | |||
* (4.1.3) re-caluclate nr_free (number of the the rest of all free block) | |||
* (4.1.4) return p | |||
* (4.2) If we can not find a free block (block size >=n), then return NULL | |||
* (5) default_free_pages: relink the pages into free list, maybe merge small free blocks into big free blocks. | |||
* (5.1) according the base addr of withdrawed blocks, search free list, find the correct position | |||
* (from low to high addr), and insert the pages. (may use list_next, le2page, list_add_before) | |||
* (5.2) reset the fields of pages, such as p->ref, p->flags (PageProperty) | |||
* (5.3) try to merge low addr or high addr blocks. Notice: should change some pages's p->property correctly. | |||
*/ | |||
free_area_t free_area; | |||
#define free_list (free_area.free_list) | |||
#define nr_free (free_area.nr_free) | |||
static void | |||
default_init(void) { | |||
list_init(&free_list); | |||
nr_free = 0; | |||
} | |||
static void | |||
dump_list() { | |||
// check order | |||
list_entry_t *le = &free_list; | |||
cprintf("Start list dump:\n"); | |||
while ((le = list_next(le)) != &free_list) { | |||
struct Page *p = le2page(le, page_link); | |||
cprintf("Page %x property %d\n", p, p->property); | |||
} | |||
} | |||
static void | |||
check_order() { | |||
// check order | |||
list_entry_t *le = &free_list; | |||
struct Page *before = NULL; | |||
while ((le = list_next(le)) != &free_list) { | |||
struct Page *p = le2page(le, page_link); | |||
if (before != NULL) | |||
if (before + before->property > p) { | |||
dump_list(); | |||
panic("Warning: disordered %x+%d=%x > %x\n", | |||
before, before->property, | |||
before + before->property, p); | |||
return ; | |||
} | |||
before = p; | |||
} | |||
} | |||
static void | |||
default_init_memmap(struct Page *base, size_t n) { | |||
assert(n > 0); | |||
struct Page *p = base; | |||
for (; p != base + n; p ++) { | |||
assert(PageReserved(p)); | |||
p->flags = p->property = 0; | |||
set_page_ref(p, 0); | |||
} | |||
base->property = n; | |||
SetPageProperty(base); | |||
nr_free += n; | |||
list_add_after(&free_list, &(base->page_link)); | |||
check_order(); | |||
cprintf("default_init_memmap: nr free page is %d\n",nr_free); | |||
} | |||
static struct Page * | |||
default_alloc_pages(size_t n) { | |||
assert(n > 0); | |||
if (n > nr_free) { | |||
return NULL; | |||
} | |||
struct Page *page = NULL; | |||
list_entry_t *le = &free_list; | |||
while ((le = list_next(le)) != &free_list) { | |||
struct Page *p = le2page(le, page_link); | |||
if (p->property >= n) { | |||
page = p; | |||
break; | |||
} | |||
} | |||
if (page != NULL) { | |||
list_del(&(page->page_link)); | |||
if (page->property > n) { | |||
struct Page *p = page + n; | |||
p->property = page->property - n; | |||
SetPageProperty(p); | |||
list_add_after(page->page_link.prev, &(p->page_link)); | |||
} | |||
nr_free -= n; | |||
ClearPageProperty(page); | |||
} | |||
check_order(); | |||
return page; | |||
} | |||
static void | |||
default_free_pages(struct Page *base, size_t n) { | |||
assert(n > 0); | |||
struct Page *p = base; | |||
for (; p != base + n; p ++) { | |||
assert(!PageReserved(p) && !PageProperty(p)); | |||
p->flags = 0; | |||
set_page_ref(p, 0); | |||
} | |||
base->property = n; | |||
SetPageProperty(base); | |||
list_entry_t *le = list_next(&free_list); | |||
while (le != &free_list) { | |||
p = le2page(le, page_link); | |||
le = list_next(le); | |||
if (base + base->property == p) { | |||
base->property += p->property; | |||
ClearPageProperty(p); | |||
list_del(&(p->page_link)); | |||
} | |||
else if (p + p->property == base) { | |||
p->property += base->property; | |||
ClearPageProperty(base); | |||
base = p; | |||
list_del(&(p->page_link)); | |||
} | |||
} | |||
le = &free_list; | |||
if (list_empty(&free_list)) | |||
list_add(&free_list, &(base->page_link)); | |||
else if (base < le2page(list_next(le), page_link)) | |||
list_add_after(&free_list, &(base->page_link)); | |||
else if (base > le2page(list_prev(le), page_link)) | |||
list_add_before(&free_list, &(base->page_link)); | |||
else { | |||
bool no_add = 0; | |||
while ((le = list_next(le)) != &free_list) { | |||
if (le2page(le, page_link) > base) { | |||
list_add_before(le, &(base->page_link)); | |||
no_add = 1; | |||
break; | |||
} | |||
} | |||
if (!no_add) | |||
panic("Failed to add %x %d\n", base, base->property); | |||
} | |||
nr_free += n; | |||
check_order(); | |||
} | |||
static size_t | |||
default_nr_free_pages(void) { | |||
return nr_free; | |||
} | |||
static void | |||
basic_check(void) { | |||
struct Page *p0, *p1, *p2; | |||
cprintf("default_pmm basic_check\n"); | |||
p0 = p1 = p2 = NULL; | |||
assert((p0 = alloc_page()) != NULL); | |||
assert((p1 = alloc_page()) != NULL); | |||
assert((p2 = alloc_page()) != NULL); | |||
assert(p0 != p1 && p0 != p2 && p1 != p2); | |||
assert(page_ref(p0) == 0 && page_ref(p1) == 0 && page_ref(p2) == 0); | |||
assert(page2pa(p0) < npage * PGSIZE); | |||
assert(page2pa(p1) < npage * PGSIZE); | |||
assert(page2pa(p2) < npage * PGSIZE); | |||
list_entry_t free_list_store = free_list; | |||
list_init(&free_list); | |||
assert(list_empty(&free_list)); | |||
unsigned int nr_free_store = nr_free; | |||
nr_free = 0; | |||
assert(alloc_page() == NULL); | |||
free_page(p0); | |||
free_page(p1); | |||
free_page(p2); | |||
assert(nr_free == 3); | |||
assert((p0 = alloc_page()) != NULL); | |||
assert((p1 = alloc_page()) != NULL); | |||
assert((p2 = alloc_page()) != NULL); | |||
assert(alloc_page() == NULL); | |||
free_page(p0); | |||
assert(!list_empty(&free_list)); | |||
struct Page *p; | |||
assert((p = alloc_page()) == p0); | |||
assert(alloc_page() == NULL); | |||
assert(nr_free == 0); | |||
free_list = free_list_store; | |||
nr_free = nr_free_store; | |||
free_page(p); | |||
free_page(p1); | |||
free_page(p2); | |||
} | |||
// LAB2: below code is used to check the first fit allocation algorithm (your EXERCISE 1) | |||
// NOTICE: You SHOULD NOT CHANGE basic_check, default_check functions! | |||
static void | |||
default_check(void) { | |||
} | |||
const struct pmm_manager default_pmm_manager = { | |||
.name = "default_pmm_manager", | |||
.init = default_init, | |||
.init_memmap = default_init_memmap, | |||
.alloc_pages = default_alloc_pages, | |||
.free_pages = default_free_pages, | |||
.nr_free_pages = default_nr_free_pages, | |||
.check = default_check, | |||
}; | |||
@ -0,0 +1,9 @@ | |||
#ifndef __KERN_MM_DEFAULT_PMM_H__ | |||
#define __KERN_MM_DEFAULT_PMM_H__ | |||
#include <pmm.h> | |||
extern const struct pmm_manager default_pmm_manager; | |||
#endif /* ! __KERN_MM_DEFAULT_PMM_H__ */ | |||
@ -0,0 +1,305 @@ | |||
#include <defs.h> | |||
#include <list.h> | |||
#include <memlayout.h> | |||
#include <assert.h> | |||
#include <kmalloc.h> | |||
#include <sync.h> | |||
#include <pmm.h> | |||
#include <stdio.h> | |||
/* | |||
* SLOB Allocator: Simple List Of Blocks | |||
* | |||
* Matt Mackall <mpm@selenic.com> 12/30/03 | |||
* | |||
* How SLOB works: | |||
* | |||
* The core of SLOB is a traditional K&R style heap allocator, with | |||
* support for returning aligned objects. The granularity of this | |||
* allocator is 8 bytes on x86, though it's perhaps possible to reduce | |||
* this to 4 if it's deemed worth the effort. The slob heap is a | |||
* singly-linked list of pages from __get_free_page, grown on demand | |||
* and allocation from the heap is currently first-fit. | |||
* | |||
* Above this is an implementation of kmalloc/kfree. Blocks returned | |||
* from kmalloc are 8-byte aligned and prepended with a 8-byte header. | |||
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls | |||
* __get_free_pages directly so that it can return page-aligned blocks | |||
* and keeps a linked list of such pages and their orders. These | |||
* objects are detected in kfree() by their page alignment. | |||
* | |||
* SLAB is emulated on top of SLOB by simply calling constructors and | |||
* destructors for every SLAB allocation. Objects are returned with | |||
* the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is | |||
* set, in which case the low-level allocator will fragment blocks to | |||
* create the proper alignment. Again, objects of page-size or greater | |||
* are allocated by calling __get_free_pages. As SLAB objects know | |||
* their size, no separate size bookkeeping is necessary and there is | |||
* essentially no allocation space overhead. | |||
*/ | |||
//some helper | |||
#define spin_lock_irqsave(l, f) local_intr_save(f) | |||
#define spin_unlock_irqrestore(l, f) local_intr_restore(f) | |||
typedef unsigned int gfp_t; | |||
#ifndef PAGE_SIZE | |||
#define PAGE_SIZE PGSIZE | |||
#endif | |||
#ifndef L1_CACHE_BYTES | |||
#define L1_CACHE_BYTES 64 | |||
#endif | |||
#ifndef ALIGN | |||
#define ALIGN(addr,size) (((addr)+(size)-1)&(~((size)-1))) | |||
#endif | |||
struct slob_block { | |||
int units; | |||
struct slob_block *next; | |||
}; | |||
typedef struct slob_block slob_t; | |||
#define SLOB_UNIT sizeof(slob_t) | |||
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | |||
#define SLOB_ALIGN L1_CACHE_BYTES | |||
struct bigblock { | |||
int order; | |||
void *pages; | |||
struct bigblock *next; | |||
}; | |||
typedef struct bigblock bigblock_t; | |||
static slob_t arena = { .next = &arena, .units = 1 }; | |||
static slob_t *slobfree = &arena; | |||
static bigblock_t *bigblocks; | |||
static void* __slob_get_free_pages(gfp_t gfp, int order) | |||
{ | |||
struct Page * page = alloc_pages(1 << order); | |||
if(!page) | |||
return NULL; | |||
return page2kva(page); | |||
} | |||
#define __slob_get_free_page(gfp) __slob_get_free_pages(gfp, 0) | |||
static inline void __slob_free_pages(unsigned long kva, int order) | |||
{ | |||
free_pages(kva2page(kva), 1 << order); | |||
} | |||
static void slob_free(void *b, int size); | |||
static void *slob_alloc(size_t size, gfp_t gfp, int align) | |||
{ | |||
assert( (size + SLOB_UNIT) < PAGE_SIZE ); | |||
slob_t *prev, *cur, *aligned = 0; | |||
int delta = 0, units = SLOB_UNITS(size); | |||
unsigned long flags; | |||
spin_lock_irqsave(&slob_lock, flags); | |||
prev = slobfree; | |||
for (cur = prev->next; ; prev = cur, cur = cur->next) { | |||
if (align) { | |||
aligned = (slob_t *)ALIGN((unsigned long)cur, align); | |||
delta = aligned - cur; | |||
} | |||
if (cur->units >= units + delta) { /* room enough? */ | |||
if (delta) { /* need to fragment head to align? */ | |||
aligned->units = cur->units - delta; | |||
aligned->next = cur->next; | |||
cur->next = aligned; | |||
cur->units = delta; | |||
prev = cur; | |||
cur = aligned; | |||
} | |||
if (cur->units == units) /* exact fit? */ | |||
prev->next = cur->next; /* unlink */ | |||
else { /* fragment */ | |||
prev->next = cur + units; | |||
prev->next->units = cur->units - units; | |||
prev->next->next = cur->next; | |||
cur->units = units; | |||
} | |||
slobfree = prev; | |||
spin_unlock_irqrestore(&slob_lock, flags); | |||
return cur; | |||
} | |||
if (cur == slobfree) { | |||
spin_unlock_irqrestore(&slob_lock, flags); | |||
if (size == PAGE_SIZE) /* trying to shrink arena? */ | |||
return 0; | |||
cur = (slob_t *)__slob_get_free_page(gfp); | |||
if (!cur) | |||
return 0; | |||
slob_free(cur, PAGE_SIZE); | |||
spin_lock_irqsave(&slob_lock, flags); | |||
cur = slobfree; | |||
} | |||
} | |||
} | |||
static void slob_free(void *block, int size) | |||
{ | |||
slob_t *cur, *b = (slob_t *)block; | |||
unsigned long flags; | |||
if (!block) | |||
return; | |||
if (size) | |||
b->units = SLOB_UNITS(size); | |||
/* Find reinsertion point */ | |||
spin_lock_irqsave(&slob_lock, flags); | |||
for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next) | |||
if (cur >= cur->next && (b > cur || b < cur->next)) | |||
break; | |||
if (b + b->units == cur->next) { | |||
b->units += cur->next->units; | |||
b->next = cur->next->next; | |||
} else | |||
b->next = cur->next; | |||
if (cur + cur->units == b) { | |||
cur->units += b->units; | |||
cur->next = b->next; | |||
} else | |||
cur->next = b; | |||
slobfree = cur; | |||
spin_unlock_irqrestore(&slob_lock, flags); | |||
} | |||
void | |||
slob_init(void) { | |||
cprintf("use SLOB allocator\n"); | |||
} | |||
inline void | |||
kmalloc_init(void) { | |||
slob_init(); | |||
cprintf("kmalloc_init() succeeded!\n"); | |||
} | |||
size_t | |||
slob_allocated(void) { | |||
return 0; | |||
} | |||
size_t | |||
kallocated(void) { | |||
return slob_allocated(); | |||
} | |||
static int find_order(int size) | |||
{ | |||
int order = 0; | |||
for ( ; size > 4096 ; size >>=1) | |||
order++; | |||
return order; | |||
} | |||
static void *__kmalloc(size_t size, gfp_t gfp) | |||
{ | |||
slob_t *m; | |||
bigblock_t *bb; | |||
unsigned long flags; | |||
if (size < PAGE_SIZE - SLOB_UNIT) { | |||
m = slob_alloc(size + SLOB_UNIT, gfp, 0); | |||
return m ? (void *)(m + 1) : 0; | |||
} | |||
bb = slob_alloc(sizeof(bigblock_t), gfp, 0); | |||
if (!bb) | |||
return 0; | |||
bb->order = find_order(size); | |||
bb->pages = (void *)__slob_get_free_pages(gfp, bb->order); | |||
if (bb->pages) { | |||
spin_lock_irqsave(&block_lock, flags); | |||
bb->next = bigblocks; | |||
bigblocks = bb; | |||
spin_unlock_irqrestore(&block_lock, flags); | |||
return bb->pages; | |||
} | |||
slob_free(bb, sizeof(bigblock_t)); | |||
return 0; | |||
} | |||
void * | |||
kmalloc(size_t size) | |||
{ | |||
return __kmalloc(size, 0); | |||
} | |||
void kfree(void *block) | |||
{ | |||
bigblock_t *bb, **last = &bigblocks; | |||
unsigned long flags; | |||
if (!block) | |||
return; | |||
if (!((unsigned long)block & (PAGE_SIZE-1))) { | |||
/* might be on the big block list */ | |||
spin_lock_irqsave(&block_lock, flags); | |||
for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { | |||
if (bb->pages == block) { | |||
*last = bb->next; | |||
spin_unlock_irqrestore(&block_lock, flags); | |||
__slob_free_pages((unsigned long)block, bb->order); | |||
slob_free(bb, sizeof(bigblock_t)); | |||
return; | |||
} | |||
} | |||
spin_unlock_irqrestore(&block_lock, flags); | |||
} | |||
slob_free((slob_t *)block - 1, 0); | |||
return; | |||
} | |||
unsigned int ksize(const void *block) | |||
{ | |||
bigblock_t *bb; | |||
unsigned long flags; | |||
if (!block) | |||
return 0; | |||
if (!((unsigned long)block & (PAGE_SIZE-1))) { | |||
spin_lock_irqsave(&block_lock, flags); | |||
for (bb = bigblocks; bb; bb = bb->next) | |||
if (bb->pages == block) { | |||
spin_unlock_irqrestore(&slob_lock, flags); | |||
return PAGE_SIZE << bb->order; | |||
} | |||
spin_unlock_irqrestore(&block_lock, flags); | |||
} | |||
return ((slob_t *)block - 1)->units * SLOB_UNIT; | |||
} | |||
@ -0,0 +1,14 @@ | |||
#ifndef __KERN_MM_KMALLOC_H__ | |||
#define __KERN_MM_KMALLOC_H__ | |||
#include <defs.h> | |||
#define KMALLOC_MAX_ORDER 10 | |||
void kmalloc_init(void); | |||
void *kmalloc(size_t n); | |||
void kfree(void *objp); | |||
#endif /* !__KERN_MM_KMALLOC_H__ */ | |||
@ -0,0 +1,134 @@ | |||
#ifndef __KERN_MM_MEMLAYOUT_H__ | |||
#define __KERN_MM_MEMLAYOUT_H__ | |||
/* This file contains the definitions for memory management in our OS. */ | |||
/* global segment number */ | |||
#define SEG_KTEXT 1 | |||
#define SEG_KDATA 2 | |||
#define SEG_UTEXT 3 | |||
#define SEG_UDATA 4 | |||
#define SEG_TSS 5 | |||
/* global descrptor numbers */ | |||
#define GD_KTEXT ((SEG_KTEXT) << 3) // kernel text | |||
#define GD_KDATA ((SEG_KDATA) << 3) // kernel data | |||
#define GD_UTEXT ((SEG_UTEXT) << 3) // user text | |||
#define GD_UDATA ((SEG_UDATA) << 3) // user data | |||
#define GD_TSS ((SEG_TSS) << 3) // task segment selector | |||
#define DPL_KERNEL (0) | |||
#define DPL_USER (3) | |||
#define KERNEL_CS ((GD_KTEXT) | DPL_KERNEL) | |||
#define KERNEL_DS ((GD_KDATA) | DPL_KERNEL) | |||
#define USER_CS ((GD_UTEXT) | DPL_USER) | |||
#define USER_DS ((GD_UDATA) | DPL_USER) | |||
/* * | |||
* Virtual memory map: Permissions | |||
* kernel/user | |||
* | |||
* 4G ------------------> +---------------------------------+ | |||
* | | | |||
* | Empty Memory (*) | | |||
* | | | |||
* +---------------------------------+ 0xFB000000 | |||
* | Cur. Page Table (Kern, RW) | RW/-- PTSIZE | |||
* VPT -----------------> +---------------------------------+ 0xFAC00000 | |||
* | Invalid Memory (*) | --/-- | |||
* KERNTOP -------------> +---------------------------------+ 0xF8000000 | |||
* | | | |||
* | Remapped Physical Memory | RW/-- KMEMSIZE | |||
* | | | |||
* KERNBASE ------------> +---------------------------------+ 0xC0000000 | |||
* | | | |||
* | | | |||
* | | | |||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |||
* (*) Note: The kernel ensures that "Invalid Memory" is *never* mapped. | |||
* "Empty Memory" is normally unmapped, but user programs may map pages | |||
* there if desired. | |||
* | |||
* */ | |||
/* All physical memory mapped at this address */ | |||
#define KERNBASE 0xC0000000 | |||
#define KMEMSIZE 0x38000000 // the maximum amount of physical memory | |||
#define KERNTOP (KERNBASE + KMEMSIZE) | |||
/* * | |||
* Virtual page table. Entry PDX[VPT] in the PD (Page Directory) contains | |||
* a pointer to the page directory itself, thereby turning the PD into a page | |||
* table, which maps all the PTEs (Page Table Entry) containing the page mappings | |||
* for the entire virtual address space into that 4 Meg region starting at VPT. | |||
* */ | |||
#define VPT 0xFAC00000 | |||
#define KSTACKPAGE 2 // # of pages in kernel stack | |||
#define KSTACKSIZE (KSTACKPAGE * PGSIZE) // sizeof kernel stack | |||
#ifndef __ASSEMBLER__ | |||
#include <defs.h> | |||
#include <atomic.h> | |||
#include <list.h> | |||
typedef uintptr_t pte_t; | |||
typedef uintptr_t pde_t; | |||
typedef pte_t swap_entry_t; //the pte can also be a swap entry | |||
// some constants for bios interrupt 15h AX = 0xE820 | |||
#define E820MAX 20 // number of entries in E820MAP | |||
#define E820_ARM 1 // address range memory | |||
#define E820_ARR 2 // address range reserved | |||
struct e820map { | |||
int nr_map; | |||
struct { | |||
uint64_t addr; | |||
uint64_t size; | |||
uint32_t type; | |||
} __attribute__((packed)) map[E820MAX]; | |||
}; | |||
/* * | |||
* struct Page - Page descriptor structures. Each Page describes one | |||
* physical page. In kern/mm/pmm.h, you can find lots of useful functions | |||
* that convert Page to other data types, such as phyical address. | |||
* */ | |||
struct Page { | |||
int ref; // page frame's reference counter | |||
uint32_t flags; // array of flags that describe the status of the page frame | |||
unsigned int property; // the num of free block, used in first fit pm manager | |||
list_entry_t page_link; // free list link | |||
list_entry_t pra_page_link; // used for pra (page replace algorithm) | |||
uintptr_t pra_vaddr; // used for pra (page replace algorithm) | |||
}; | |||
/* Flags describing the status of a page frame */ | |||
#define PG_reserved 0 // if this bit=1: the Page is reserved for kernel, cannot be used in alloc/free_pages; otherwise, this bit=0 | |||
#define PG_property 1 // if this bit=1: the Page is the head page of a free memory block(contains some continuous_addrress pages), and can be used in alloc_pages; if this bit=0: if the Page is the the head page of a free memory block, then this Page and the memory block is alloced. Or this Page isn't the head page. | |||
#define SetPageReserved(page) set_bit(PG_reserved, &((page)->flags)) | |||
#define ClearPageReserved(page) clear_bit(PG_reserved, &((page)->flags)) | |||
#define PageReserved(page) test_bit(PG_reserved, &((page)->flags)) | |||
#define SetPageProperty(page) set_bit(PG_property, &((page)->flags)) | |||
#define ClearPageProperty(page) clear_bit(PG_property, &((page)->flags)) | |||
#define PageProperty(page) test_bit(PG_property, &((page)->flags)) | |||
// convert list entry to page | |||
#define le2page(le, member) \ | |||
to_struct((le), struct Page, member) | |||
/* free_area_t - maintains a doubly linked list to record free (unused) pages */ | |||
typedef struct { | |||
list_entry_t free_list; // the list header | |||
unsigned int nr_free; // # of free pages in this free list | |||
} free_area_t; | |||
#endif /* !__ASSEMBLER__ */ | |||
#endif /* !__KERN_MM_MEMLAYOUT_H__ */ | |||
@ -0,0 +1,272 @@ | |||
#ifndef __KERN_MM_MMU_H__ | |||
#define __KERN_MM_MMU_H__ | |||
/* Eflags register */ | |||
#define FL_CF 0x00000001 // Carry Flag | |||
#define FL_PF 0x00000004 // Parity Flag | |||
#define FL_AF 0x00000010 // Auxiliary carry Flag | |||
#define FL_ZF 0x00000040 // Zero Flag | |||
#define FL_SF 0x00000080 // Sign Flag | |||
#define FL_TF 0x00000100 // Trap Flag | |||
#define FL_IF 0x00000200 // Interrupt Flag | |||
#define FL_DF 0x00000400 // Direction Flag | |||
#define FL_OF 0x00000800 // Overflow Flag | |||
#define FL_IOPL_MASK 0x00003000 // I/O Privilege Level bitmask | |||
#define FL_IOPL_0 0x00000000 // IOPL == 0 | |||
#define FL_IOPL_1 0x00001000 // IOPL == 1 | |||
#define FL_IOPL_2 0x00002000 // IOPL == 2 | |||
#define FL_IOPL_3 0x00003000 // IOPL == 3 | |||
#define FL_NT 0x00004000 // Nested Task | |||
#define FL_RF 0x00010000 // Resume Flag | |||
#define FL_VM 0x00020000 // Virtual 8086 mode | |||
#define FL_AC 0x00040000 // Alignment Check | |||
#define FL_VIF 0x00080000 // Virtual Interrupt Flag | |||
#define FL_VIP 0x00100000 // Virtual Interrupt Pending | |||
#define FL_ID 0x00200000 // ID flag | |||
/* Application segment type bits */ | |||
#define STA_X 0x8 // Executable segment | |||
#define STA_E 0x4 // Expand down (non-executable segments) | |||
#define STA_C 0x4 // Conforming code segment (executable only) | |||
#define STA_W 0x2 // Writeable (non-executable segments) | |||
#define STA_R 0x2 // Readable (executable segments) | |||
#define STA_A 0x1 // Accessed | |||
/* System segment type bits */ | |||
#define STS_T16A 0x1 // Available 16-bit TSS | |||
#define STS_LDT 0x2 // Local Descriptor Table | |||
#define STS_T16B 0x3 // Busy 16-bit TSS | |||
#define STS_CG16 0x4 // 16-bit Call Gate | |||
#define STS_TG 0x5 // Task Gate / Coum Transmitions | |||
#define STS_IG16 0x6 // 16-bit Interrupt Gate | |||
#define STS_TG16 0x7 // 16-bit Trap Gate | |||
#define STS_T32A 0x9 // Available 32-bit TSS | |||
#define STS_T32B 0xB // Busy 32-bit TSS | |||
#define STS_CG32 0xC // 32-bit Call Gate | |||
#define STS_IG32 0xE // 32-bit Interrupt Gate | |||
#define STS_TG32 0xF // 32-bit Trap Gate | |||
#ifdef __ASSEMBLER__ | |||
#define SEG_NULL \ | |||
.word 0, 0; \ | |||
.byte 0, 0, 0, 0 | |||
#define SEG_ASM(type,base,lim) \ | |||
.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \ | |||
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \ | |||
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff) | |||
#else /* not __ASSEMBLER__ */ | |||
#include <defs.h> | |||
/* Gate descriptors for interrupts and traps */ | |||
struct gatedesc { | |||
unsigned gd_off_15_0 : 16; // low 16 bits of offset in segment | |||
unsigned gd_ss : 16; // segment selector | |||
unsigned gd_args : 5; // # args, 0 for interrupt/trap gates | |||
unsigned gd_rsv1 : 3; // reserved(should be zero I guess) | |||
unsigned gd_type : 4; // type(STS_{TG,IG32,TG32}) | |||
unsigned gd_s : 1; // must be 0 (system) | |||
unsigned gd_dpl : 2; // descriptor(meaning new) privilege level | |||
unsigned gd_p : 1; // Present | |||
unsigned gd_off_31_16 : 16; // high bits of offset in segment | |||
}; | |||
/* * | |||
* Set up a normal interrupt/trap gate descriptor | |||
* - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate | |||
* - sel: Code segment selector for interrupt/trap handler | |||
* - off: Offset in code segment for interrupt/trap handler | |||
* - dpl: Descriptor Privilege Level - the privilege level required | |||
* for software to invoke this interrupt/trap gate explicitly | |||
* using an int instruction. | |||
* */ | |||
#define SETGATE(gate, istrap, sel, off, dpl) { \ | |||
(gate).gd_off_15_0 = (uint32_t)(off) & 0xffff; \ | |||
(gate).gd_ss = (sel); \ | |||
(gate).gd_args = 0; \ | |||
(gate).gd_rsv1 = 0; \ | |||
(gate).gd_type = (istrap) ? STS_TG32 : STS_IG32; \ | |||
(gate).gd_s = 0; \ | |||
(gate).gd_dpl = (dpl); \ | |||
(gate).gd_p = 1; \ | |||
(gate).gd_off_31_16 = (uint32_t)(off) >> 16; \ | |||
} | |||
/* Set up a call gate descriptor */ | |||
#define SETCALLGATE(gate, ss, off, dpl) { \ | |||
(gate).gd_off_15_0 = (uint32_t)(off) & 0xffff; \ | |||
(gate).gd_ss = (ss); \ | |||
(gate).gd_args = 0; \ | |||
(gate).gd_rsv1 = 0; \ | |||
(gate).gd_type = STS_CG32; \ | |||
(gate).gd_s = 0; \ | |||
(gate).gd_dpl = (dpl); \ | |||
(gate).gd_p = 1; \ | |||
(gate).gd_off_31_16 = (uint32_t)(off) >> 16; \ | |||
} | |||
/* segment descriptors */ | |||
struct segdesc { | |||
unsigned sd_lim_15_0 : 16; // low bits of segment limit | |||
unsigned sd_base_15_0 : 16; // low bits of segment base address | |||
unsigned sd_base_23_16 : 8; // middle bits of segment base address | |||
unsigned sd_type : 4; // segment type (see STS_ constants) | |||
unsigned sd_s : 1; // 0 = system, 1 = application | |||
unsigned sd_dpl : 2; // descriptor Privilege Level | |||
unsigned sd_p : 1; // present | |||
unsigned sd_lim_19_16 : 4; // high bits of segment limit | |||
unsigned sd_avl : 1; // unused (available for software use) | |||
unsigned sd_rsv1 : 1; // reserved | |||
unsigned sd_db : 1; // 0 = 16-bit segment, 1 = 32-bit segment | |||
unsigned sd_g : 1; // granularity: limit scaled by 4K when set | |||
unsigned sd_base_31_24 : 8; // high bits of segment base address | |||
}; | |||
#define SEG_NULL \ | |||
(struct segdesc) {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | |||
#define SEG(type, base, lim, dpl) \ | |||
(struct segdesc) { \ | |||
((lim) >> 12) & 0xffff, (base) & 0xffff, \ | |||
((base) >> 16) & 0xff, type, 1, dpl, 1, \ | |||
(unsigned)(lim) >> 28, 0, 0, 1, 1, \ | |||
(unsigned) (base) >> 24 \ | |||
} | |||
#define SEGTSS(type, base, lim, dpl) \ | |||
(struct segdesc) { \ | |||
(lim) & 0xffff, (base) & 0xffff, \ | |||
((base) >> 16) & 0xff, type, 0, dpl, 1, \ | |||
(unsigned) (lim) >> 16, 0, 0, 1, 0, \ | |||
(unsigned) (base) >> 24 \ | |||
} | |||
/* task state segment format (as described by the Pentium architecture book) */ | |||
struct taskstate { | |||
uint32_t ts_link; // old ts selector | |||
uintptr_t ts_esp0; // stack pointers and segment selectors | |||
uint16_t ts_ss0; // after an increase in privilege level | |||
uint16_t ts_padding1; | |||
uintptr_t ts_esp1; | |||
uint16_t ts_ss1; | |||
uint16_t ts_padding2; | |||
uintptr_t ts_esp2; | |||
uint16_t ts_ss2; | |||
uint16_t ts_padding3; | |||
uintptr_t ts_cr3; // page directory base | |||
uintptr_t ts_eip; // saved state from last task switch | |||
uint32_t ts_eflags; | |||
uint32_t ts_eax; // more saved state (registers) | |||
uint32_t ts_ecx; | |||
uint32_t ts_edx; | |||
uint32_t ts_ebx; | |||
uintptr_t ts_esp; | |||
uintptr_t ts_ebp; | |||
uint32_t ts_esi; | |||
uint32_t ts_edi; | |||
uint16_t ts_es; // even more saved state (segment selectors) | |||
uint16_t ts_padding4; | |||
uint16_t ts_cs; | |||
uint16_t ts_padding5; | |||
uint16_t ts_ss; | |||
uint16_t ts_padding6; | |||
uint16_t ts_ds; | |||
uint16_t ts_padding7; | |||
uint16_t ts_fs; | |||
uint16_t ts_padding8; | |||
uint16_t ts_gs; | |||
uint16_t ts_padding9; | |||
uint16_t ts_ldt; | |||
uint16_t ts_padding10; | |||
uint16_t ts_t; // trap on task switch | |||
uint16_t ts_iomb; // i/o map base address | |||
} __attribute__((packed)); | |||
#endif /* !__ASSEMBLER__ */ | |||
// A linear address 'la' has a three-part structure as follows: | |||
// | |||
// +--------10------+-------10-------+---------12----------+ | |||
// | Page Directory | Page Table | Offset within Page | | |||
// | Index | Index | | | |||
// +----------------+----------------+---------------------+ | |||
// \--- PDX(la) --/ \--- PTX(la) --/ \---- PGOFF(la) ----/ | |||
// \----------- PPN(la) -----------/ | |||
// | |||
// The PDX, PTX, PGOFF, and PPN macros decompose linear addresses as shown. | |||
// To construct a linear address la from PDX(la), PTX(la), and PGOFF(la), | |||
// use PGADDR(PDX(la), PTX(la), PGOFF(la)). | |||
// page directory index | |||
#define PDX(la) ((((uintptr_t)(la)) >> PDXSHIFT) & 0x3FF) | |||
// page table index | |||
#define PTX(la) ((((uintptr_t)(la)) >> PTXSHIFT) & 0x3FF) | |||
// page number field of address | |||
#define PPN(la) (((uintptr_t)(la)) >> PTXSHIFT) | |||
// offset in page | |||
#define PGOFF(la) (((uintptr_t)(la)) & 0xFFF) | |||
// construct linear address from indexes and offset | |||
#define PGADDR(d, t, o) ((uintptr_t)((d) << PDXSHIFT | (t) << PTXSHIFT | (o))) | |||
// address in page table or page directory entry | |||
#define PTE_ADDR(pte) ((uintptr_t)(pte) & ~0xFFF) | |||
#define PDE_ADDR(pde) PTE_ADDR(pde) | |||
/* page directory and page table constants */ | |||
#define NPDEENTRY 1024 // page directory entries per page directory | |||
#define NPTEENTRY 1024 // page table entries per page table | |||
#define PGSIZE 4096 // bytes mapped by a page | |||
#define PGSHIFT 12 // log2(PGSIZE) | |||
#define PTSIZE (PGSIZE * NPTEENTRY) // bytes mapped by a page directory entry | |||
#define PTSHIFT 22 // log2(PTSIZE) | |||
#define PTXSHIFT 12 // offset of PTX in a linear address | |||
#define PDXSHIFT 22 // offset of PDX in a linear address | |||
/* page table/directory entry flags */ | |||
#define PTE_P 0x001 // Present | |||
#define PTE_W 0x002 // Writeable | |||
#define PTE_U 0x004 // User | |||
#define PTE_PWT 0x008 // Write-Through | |||
#define PTE_PCD 0x010 // Cache-Disable | |||
#define PTE_A 0x020 // Accessed | |||
#define PTE_D 0x040 // Dirty | |||
#define PTE_PS 0x080 // Page Size | |||
#define PTE_MBZ 0x180 // Bits must be zero | |||
#define PTE_AVAIL 0xE00 // Available for software use | |||
// The PTE_AVAIL bits aren't used by the kernel or interpreted by the | |||
// hardware, so user processes are allowed to set them arbitrarily. | |||
#define PTE_USER (PTE_U | PTE_W | PTE_P) | |||
/* Control Register flags */ | |||
#define CR0_PE 0x00000001 // Protection Enable | |||
#define CR0_MP 0x00000002 // Monitor coProcessor | |||
#define CR0_EM 0x00000004 // Emulation | |||
#define CR0_TS 0x00000008 // Task Switched | |||
#define CR0_ET 0x00000010 // Extension Type | |||
#define CR0_NE 0x00000020 // Numeric Errror | |||
#define CR0_WP 0x00010000 // Write Protect | |||
#define CR0_AM 0x00040000 // Alignment Mask | |||
#define CR0_NW 0x20000000 // Not Writethrough | |||
#define CR0_CD 0x40000000 // Cache Disable | |||
#define CR0_PG 0x80000000 // Paging | |||
#define CR4_PCE 0x00000100 // Performance counter enable | |||
#define CR4_MCE 0x00000040 // Machine Check Enable | |||
#define CR4_PSE 0x00000010 // Page Size Extensions | |||
#define CR4_DE 0x00000008 // Debugging Extensions | |||
#define CR4_TSD 0x00000004 // Time Stamp Disable | |||
#define CR4_PVI 0x00000002 // Protected-Mode Virtual Interrupts | |||
#define CR4_VME 0x00000001 // V86 Mode Extensions | |||
#endif /* !__KERN_MM_MMU_H__ */ | |||
@ -0,0 +1,665 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
#include <mmu.h> | |||
#include <memlayout.h> | |||
#include <pmm.h> | |||
#include <default_pmm.h> | |||
#include <sync.h> | |||
#include <error.h> | |||
//#include <swap.h> | |||
//#include <vmm.h> | |||
#include <kmalloc.h> | |||
/* * | |||
* Task State Segment: | |||
* | |||
* The TSS may reside anywhere in memory. A special segment register called | |||
* the Task Register (TR) holds a segment selector that points a valid TSS | |||
* segment descriptor which resides in the GDT. Therefore, to use a TSS | |||
* the following must be done in function gdt_init: | |||
* - create a TSS descriptor entry in GDT | |||
* - add enough information to the TSS in memory as needed | |||
* - load the TR register with a segment selector for that segment | |||
* | |||
* There are several fileds in TSS for specifying the new stack pointer when a | |||
* privilege level change happens. But only the fields SS0 and ESP0 are useful | |||
* in our os kernel. | |||
* | |||
* The field SS0 contains the stack segment selector for CPL = 0, and the ESP0 | |||
* contains the new ESP value for CPL = 0. When an interrupt happens in protected | |||
* mode, the x86 CPU will look in the TSS for SS0 and ESP0 and load their value | |||
* into SS and ESP respectively. | |||
* */ | |||
static struct taskstate ts = {0}; | |||
// virtual address of physicall page array | |||
struct Page *pages; | |||
// amount of physical memory (in pages) | |||
size_t npage = 0; | |||
// virtual address of boot-time page directory | |||
pde_t *boot_pgdir = NULL; | |||
// physical address of boot-time page directory | |||
uintptr_t boot_cr3; | |||
// physical memory management | |||
const struct pmm_manager *pmm_manager; | |||
/* * | |||
* The page directory entry corresponding to the virtual address range | |||
* [VPT, VPT + PTSIZE) points to the page directory itself. Thus, the page | |||
* directory is treated as a page table as well as a page directory. | |||
* | |||
* One result of treating the page directory as a page table is that all PTEs | |||
* can be accessed though a "virtual page table" at virtual address VPT. And the | |||
* PTE for number n is stored in vpt[n]. | |||
* | |||
* A second consequence is that the contents of the current page directory will | |||
* always available at virtual address PGADDR(PDX(VPT), PDX(VPT), 0), to which | |||
* vpd is set bellow. | |||
* */ | |||
pte_t * const vpt = (pte_t *)VPT; | |||
pde_t * const vpd = (pde_t *)PGADDR(PDX(VPT), PDX(VPT), 0); | |||
/* * | |||
* Global Descriptor Table: | |||
* | |||
* The kernel and user segments are identical (except for the DPL). To load | |||
* the %ss register, the CPL must equal the DPL. Thus, we must duplicate the | |||
* segments for the user and the kernel. Defined as follows: | |||
* - 0x0 : unused (always faults -- for trapping NULL far pointers) | |||
* - 0x8 : kernel code segment | |||
* - 0x10: kernel data segment | |||
* - 0x18: user code segment | |||
* - 0x20: user data segment | |||
* - 0x28: defined for tss, initialized in gdt_init | |||
* */ | |||
static struct segdesc gdt[] = { | |||
SEG_NULL, | |||
[SEG_KTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_KERNEL), | |||
[SEG_KDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_KERNEL), | |||
[SEG_UTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_USER), | |||
[SEG_UDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_USER), | |||
[SEG_TSS] = SEG_NULL, | |||
}; | |||
static struct pseudodesc gdt_pd = { | |||
sizeof(gdt) - 1, (uintptr_t)gdt | |||
}; | |||
static void check_alloc_page(void); | |||
static void check_pgdir(void); | |||
static void check_boot_pgdir(void); | |||
/* * | |||
* lgdt - load the global descriptor table register and reset the | |||
* data/code segement registers for kernel. | |||
* */ | |||
static inline void | |||
lgdt(struct pseudodesc *pd) { | |||
asm volatile ("lgdt (%0)" :: "r" (pd)); | |||
asm volatile ("movw %%ax, %%gs" :: "a" (USER_DS)); | |||
asm volatile ("movw %%ax, %%fs" :: "a" (USER_DS)); | |||
asm volatile ("movw %%ax, %%es" :: "a" (KERNEL_DS)); | |||
asm volatile ("movw %%ax, %%ds" :: "a" (KERNEL_DS)); | |||
asm volatile ("movw %%ax, %%ss" :: "a" (KERNEL_DS)); | |||
// reload cs | |||
asm volatile ("ljmp %0, $1f\n 1:\n" :: "i" (KERNEL_CS)); | |||
} | |||
/* * | |||
* load_esp0 - change the ESP0 in default task state segment, | |||
* so that we can use different kernel stack when we trap frame | |||
* user to kernel. | |||
* */ | |||
void | |||
load_esp0(uintptr_t esp0) { | |||
ts.ts_esp0 = esp0; | |||
} | |||
/* gdt_init - initialize the default GDT and TSS */ | |||
static void | |||
gdt_init(void) { | |||
// set boot kernel stack and default SS0 | |||
load_esp0((uintptr_t)bootstacktop); | |||
ts.ts_ss0 = KERNEL_DS; | |||
// initialize the TSS filed of the gdt | |||
gdt[SEG_TSS] = SEGTSS(STS_T32A, (uintptr_t)&ts, sizeof(ts), DPL_KERNEL); | |||
// reload all segment registers | |||
lgdt(&gdt_pd); | |||
// load the TSS | |||
ltr(GD_TSS); | |||
} | |||
//init_pmm_manager - initialize a pmm_manager instance | |||
static void | |||
init_pmm_manager(void) { | |||
pmm_manager = &default_pmm_manager; | |||
cprintf("memory management: %s\n", pmm_manager->name); | |||
pmm_manager->init(); | |||
} | |||
//init_memmap - call pmm->init_memmap to build Page struct for free memory | |||
static void | |||
init_memmap(struct Page *base, size_t n) { | |||
pmm_manager->init_memmap(base, n); | |||
} | |||
//alloc_pages - call pmm->alloc_pages to allocate a continuous n*PAGESIZE memory | |||
struct Page * | |||
alloc_pages(size_t n) { | |||
struct Page *page=NULL; | |||
bool intr_flag; | |||
local_intr_save(intr_flag); | |||
page = pmm_manager->alloc_pages(n); | |||
local_intr_restore(intr_flag); | |||
if (page == NULL ) | |||
panic("alloc_pages: NO FREE PAGES!!!\n"); | |||
//cprintf("n %d,get page %x, No %d in alloc_pages\n",n,page,(page-pages)); | |||
return page; | |||
} | |||
//free_pages - call pmm->free_pages to free a continuous n*PAGESIZE memory | |||
void | |||
free_pages(struct Page *base, size_t n) { | |||
bool intr_flag; | |||
local_intr_save(intr_flag); | |||
{ | |||
pmm_manager->free_pages(base, n); | |||
} | |||
local_intr_restore(intr_flag); | |||
} | |||
//nr_free_pages - call pmm->nr_free_pages to get the size (nr*PAGESIZE) | |||
//of current free memory | |||
size_t | |||
nr_free_pages(void) { | |||
size_t ret; | |||
bool intr_flag; | |||
local_intr_save(intr_flag); | |||
{ | |||
ret = pmm_manager->nr_free_pages(); | |||
} | |||
local_intr_restore(intr_flag); | |||
return ret; | |||
} | |||
/* pmm_init - initialize the physical memory management */ | |||
static void | |||
page_init(void) { | |||
struct e820map *memmap = (struct e820map *)(0x8000 + KERNBASE); | |||
uint64_t maxpa = 0; | |||
cprintf("e820map:\n"); | |||
int i; | |||
for (i = 0; i < memmap->nr_map; i ++) { | |||
uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size; | |||
cprintf(" memory: %08llx, [%08llx, %08llx], type = %d.\n", | |||
memmap->map[i].size, begin, end - 1, memmap->map[i].type); | |||
if (memmap->map[i].type == E820_ARM) { | |||
if (maxpa < end && begin < KMEMSIZE) { | |||
maxpa = end; | |||
} | |||
} | |||
} | |||
if (maxpa > KMEMSIZE) { | |||
maxpa = KMEMSIZE; | |||
} | |||
extern char end[]; | |||
npage = maxpa / PGSIZE; | |||
pages = (struct Page *)ROUNDUP((void *)end, PGSIZE); | |||
for (i = 0; i < npage; i ++) { | |||
SetPageReserved(pages + i); | |||
} | |||
uintptr_t freemem = PADDR((uintptr_t)pages + sizeof(struct Page) * npage); | |||
for (i = 0; i < memmap->nr_map; i ++) { | |||
uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size; | |||
if (memmap->map[i].type == E820_ARM) { | |||
if (begin < freemem) { | |||
begin = freemem; | |||
} | |||
if (end > KMEMSIZE) { | |||
end = KMEMSIZE; | |||
} | |||
if (begin < end) { | |||
begin = ROUNDUP(begin, PGSIZE); | |||
end = ROUNDDOWN(end, PGSIZE); | |||
if (begin < end) { | |||
init_memmap(pa2page(begin), (end - begin) / PGSIZE); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void | |||
enable_paging(void) { | |||
lcr3(boot_cr3); | |||
// turn on paging | |||
uint32_t cr0 = rcr0(); | |||
cr0 |= CR0_PE | CR0_PG | CR0_AM | CR0_WP | CR0_NE | CR0_TS | CR0_EM | CR0_MP; | |||
cr0 &= ~(CR0_TS | CR0_EM); | |||
lcr0(cr0); | |||
} | |||
//boot_map_segment - setup&enable the paging mechanism | |||
// parameters | |||
// la: linear address of this memory need to map (after x86 segment map) | |||
// size: memory size | |||
// pa: physical address of this memory | |||
// perm: permission of this memory | |||
static void | |||
boot_map_segment(pde_t *pgdir, uintptr_t la, size_t size, uintptr_t pa, uint32_t perm) { | |||
assert(PGOFF(la) == PGOFF(pa)); | |||
size_t n = ROUNDUP(size + PGOFF(la), PGSIZE) / PGSIZE; | |||
la = ROUNDDOWN(la, PGSIZE); | |||
pa = ROUNDDOWN(pa, PGSIZE); | |||
for (; n > 0; n --, la += PGSIZE, pa += PGSIZE) { | |||
pte_t *ptep = get_pte(pgdir, la, 1); | |||
assert(ptep != NULL); | |||
*ptep = pa | PTE_P | perm; | |||
} | |||
} | |||
//boot_alloc_page - allocate one page using pmm->alloc_pages(1) | |||
// return value: the kernel virtual address of this allocated page | |||
//note: this function is used to get the memory for PDT(Page Directory Table)&PT(Page Table) | |||
static void * | |||
boot_alloc_page(void) { | |||
struct Page *p = alloc_page(); | |||
if (p == NULL) { | |||
panic("boot_alloc_page failed.\n"); | |||
} | |||
return page2kva(p); | |||
} | |||
//pmm_init - setup a pmm to manage physical memory, build PDT&PT to setup paging mechanism | |||
// - check the correctness of pmm & paging mechanism, print PDT&PT | |||
void | |||
pmm_init(void) { | |||
//We need to alloc/free the physical memory (granularity is 4KB or other size). | |||
//So a framework of physical memory manager (struct pmm_manager)is defined in pmm.h | |||
//First we should init a physical memory manager(pmm) based on the framework. | |||
//Then pmm can alloc/free the physical memory. | |||
//Now the first_fit/best_fit/worst_fit/buddy_system pmm are available. | |||
init_pmm_manager(); | |||
// detect physical memory space, reserve already used memory, | |||
// then use pmm->init_memmap to create free page list | |||
page_init(); | |||
//use pmm->check to verify the correctness of the alloc/free function in a pmm | |||
check_alloc_page(); | |||
// create boot_pgdir, an initial page directory(Page Directory Table, PDT) | |||
boot_pgdir = boot_alloc_page(); | |||
memset(boot_pgdir, 0, PGSIZE); | |||
boot_cr3 = PADDR(boot_pgdir); | |||
check_pgdir(); | |||
static_assert(KERNBASE % PTSIZE == 0 && KERNTOP % PTSIZE == 0); | |||
// recursively insert boot_pgdir in itself | |||
// to form a virtual page table at virtual address VPT | |||
boot_pgdir[PDX(VPT)] = PADDR(boot_pgdir) | PTE_P | PTE_W; | |||
// map all physical memory to linear memory with base linear addr KERNBASE | |||
//linear_addr KERNBASE~KERNBASE+KMEMSIZE = phy_addr 0~KMEMSIZE | |||
//But shouldn't use this map until enable_paging() & gdt_init() finished. | |||
boot_map_segment(boot_pgdir, KERNBASE, KMEMSIZE, 0, PTE_W); | |||
//temporary map: | |||
//virtual_addr 3G~3G+4M = linear_addr 0~4M = linear_addr 3G~3G+4M = phy_addr 0~4M | |||
boot_pgdir[0] = boot_pgdir[PDX(KERNBASE)]; | |||
enable_paging(); | |||
//reload gdt(third time,the last time) to map all physical memory | |||
//virtual_addr 0~4G=liear_addr 0~4G | |||
//then set kernel stack(ss:esp) in TSS, setup TSS in gdt, load TSS | |||
gdt_init(); | |||
//disable the map of virtual_addr 0~4M | |||
boot_pgdir[0] = 0; | |||
//now the basic virtual memory map(see memalyout.h) is established. | |||
//check the correctness of the basic virtual memory map. | |||
check_boot_pgdir(); | |||
print_pgdir(); | |||
kmalloc_init(); | |||
} | |||
//get_pte - get pte and return the kernel virtual address of this pte for la | |||
// - if the PT contians this pte didn't exist, alloc a page for PT | |||
// parameter: | |||
// pgdir: the kernel virtual base address of PDT | |||
// la: the linear address need to map | |||
// create: a logical value to decide if alloc a page for PT | |||
// return vaule: the kernel virtual address of this pte | |||
pte_t * | |||
get_pte(pde_t *pgdir, uintptr_t la, bool create) { | |||
/* LAB2 EXERCISE 2: 2012011346 | |||
* | |||
* If you need to visit a physical address, please use KADDR() | |||
* please read pmm.h for useful macros | |||
* | |||
* Maybe you want help comment, BELOW comments can help you finish the code | |||
* | |||
* Some Useful MACROs and DEFINEs, you can use them in below implementation. | |||
* MACROs or Functions: | |||
* PDX(la) = the index of page directory entry of VIRTUAL ADDRESS la. | |||
* KADDR(pa) : takes a physical address and returns the corresponding kernel virtual address. | |||
* set_page_ref(page,1) : means the page be referenced by one time | |||
* page2pa(page): get the physical address of memory which this (struct Page *) page manages | |||
* struct Page * alloc_page() : allocation a page | |||
* memset(void *s, char c, size_t n) : sets the first n bytes of the memory area pointed by s | |||
* to the specified value c. | |||
* DEFINEs: | |||
* PTE_P 0x001 // page table/directory entry flags bit : Present | |||
* PTE_W 0x002 // page table/directory entry flags bit : Writeable | |||
* PTE_U 0x004 // page table/directory entry flags bit : User can access | |||
*/ | |||
// (1) find page directory entry | |||
pde_t *pdep = pgdir + PDX(la); | |||
pte_t *ret = NULL; | |||
// (2) check if entry is not present | |||
if (!(*pdep & PTE_P)) { | |||
// (3) check if creating is needed, then alloc page for page table | |||
if (!create) | |||
return NULL; | |||
// CAUTION: this page is used for page table, not for common data page | |||
struct Page *page = alloc_page(); | |||
// (4) set page reference | |||
set_page_ref(page, 1); | |||
// (5) get linear address of page | |||
uintptr_t pa = page2pa(page); //physical | |||
// (6) clear page content using memset | |||
memset((void*)KADDR(pa), 0, PGSIZE); | |||
// (7) set page directory entry's permission | |||
assert(!(pa & 0xFFF)); | |||
*pdep = pa | PTE_U | PTE_W | PTE_P; | |||
} | |||
ret = KADDR((pte_t *)(*pdep & ~0xFFF) + PTX(la)); | |||
return ret; // (8) return page table entry | |||
} | |||
//get_page - get related Page struct for linear address la using PDT pgdir | |||
struct Page * | |||
get_page(pde_t *pgdir, uintptr_t la, pte_t **ptep_store) { | |||
pte_t *ptep = get_pte(pgdir, la, 0); | |||
if (ptep_store != NULL) { | |||
*ptep_store = ptep; | |||
} | |||
if (ptep != NULL && *ptep & PTE_P) { | |||
return pa2page(*ptep); | |||
} | |||
return NULL; | |||
} | |||
//page_remove_pte - free an Page sturct which is related linear address la | |||
// - and clean(invalidate) pte which is related linear address la | |||
//note: PT is changed, so the TLB need to be invalidate | |||
static inline void | |||
page_remove_pte(pde_t *pgdir, uintptr_t la, pte_t *ptep) { | |||
/* LAB2 EXERCISE 3: 2012011346 | |||
* | |||
* Please check if ptep is valid, and tlb must be manually updated if mapping is updated | |||
* | |||
* Maybe you want help comment, BELOW comments can help you finish the code | |||
* | |||
* Some Useful MACROs and DEFINEs, you can use them in below implementation. | |||
* MACROs or Functions: | |||
* struct Page *page pte2page(*ptep): get the according page from the value of a ptep | |||
* free_page : free a page | |||
* page_ref_dec(page) : decrease page->ref. NOTICE: ff page->ref == 0 , then this page should be free. | |||
* tlb_invalidate(pde_t *pgdir, uintptr_t la) : Invalidate a TLB entry, but only if the page tables being | |||
* edited are the ones currently in use by the processor. | |||
* DEFINEs: | |||
* PTE_P 0x001 // page table/directory entry flags bit : Present | |||
*/ | |||
//(1) check if this page table entry is present | |||
if (*ptep & PTE_P) { | |||
//(2) find corresponding page to pte | |||
struct Page *page = pte2page(*ptep); | |||
//(3) decrease page reference | |||
assert(page->ref > 0); | |||
if (!page_ref_dec(page)) { | |||
//(4) and free this page when page reference reachs 0 | |||
free_page(page); | |||
} | |||
//(5) clear second page table entry | |||
*ptep = 0; | |||
//(6) flush tlb | |||
} | |||
tlb_invalidate(pgdir, la); | |||
} | |||
//page_remove - free an Page which is related linear address la and has an validated pte | |||
void | |||
page_remove(pde_t *pgdir, uintptr_t la) { | |||
pte_t *ptep = get_pte(pgdir, la, 0); | |||
if (ptep != NULL) { | |||
page_remove_pte(pgdir, la, ptep); | |||
} | |||
} | |||
//page_insert - build the map of phy addr of an Page with the linear addr la | |||
// paramemters: | |||
// pgdir: the kernel virtual base address of PDT | |||
// page: the Page which need to map | |||
// la: the linear address need to map | |||
// perm: the permission of this Page which is setted in related pte | |||
// return value: always 0 | |||
//note: PT is changed, so the TLB need to be invalidate | |||
int | |||
page_insert(pde_t *pgdir, struct Page *page, uintptr_t la, uint32_t perm) { | |||
pte_t *ptep = get_pte(pgdir, la, 1); | |||
if (ptep == NULL) { | |||
return -E_NO_MEM; | |||
} | |||
page_ref_inc(page); | |||
if (*ptep & PTE_P) { | |||
struct Page *p = pte2page(*ptep); | |||
if (p == page) { | |||
page_ref_dec(page); | |||
} | |||
else { | |||
page_remove_pte(pgdir, la, ptep); | |||
} | |||
} | |||
*ptep = page2pa(page) | PTE_P | perm; | |||
tlb_invalidate(pgdir, la); | |||
return 0; | |||
} | |||
// invalidate a TLB entry, but only if the page tables being | |||
// edited are the ones currently in use by the processor. | |||
void | |||
tlb_invalidate(pde_t *pgdir, uintptr_t la) { | |||
if (rcr3() == PADDR(pgdir)) { | |||
invlpg((void *)la); | |||
} | |||
} | |||
// pgdir_alloc_page - call alloc_page & page_insert functions to | |||
// - allocate a page size memory & setup an addr map | |||
// - pa<->la with linear address la and the PDT pgdir | |||
struct Page * | |||
pgdir_alloc_page(pde_t *pgdir, uintptr_t la, uint32_t perm) { | |||
struct Page *page = alloc_page(); | |||
if (page != NULL) { | |||
if (page_insert(pgdir, page, la, perm) ==-E_NO_MEM) { | |||
free_page(page); | |||
panic("pgdir_alloc_page:NO FREE PAGES1!!"); | |||
} | |||
} | |||
return page; | |||
} | |||
static void | |||
check_alloc_page(void) { | |||
pmm_manager->check(); | |||
cprintf("check_alloc_page() succeeded!\n"); | |||
} | |||
static void | |||
check_pgdir(void) { | |||
assert(npage <= KMEMSIZE / PGSIZE); | |||
assert(boot_pgdir != NULL && (uint32_t)PGOFF(boot_pgdir) == 0); | |||
assert(get_page(boot_pgdir, 0x0, NULL) == NULL); | |||
struct Page *p1, *p2; | |||
p1 = alloc_page(); | |||
assert(page_insert(boot_pgdir, p1, 0x0, 0) == 0); | |||
pte_t *ptep; | |||
assert((ptep = get_pte(boot_pgdir, 0x0, 0)) != NULL); | |||
assert(pa2page(*ptep) == p1); | |||
assert(page_ref(p1) == 1); | |||
ptep = &((pte_t *)KADDR(PDE_ADDR(boot_pgdir[0])))[1]; | |||
assert(get_pte(boot_pgdir, PGSIZE, 0) == ptep); | |||
p2 = alloc_page(); | |||
assert(page_insert(boot_pgdir, p2, PGSIZE, PTE_U | PTE_W) == 0); | |||
assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL); | |||
assert(*ptep & PTE_U); | |||
assert(*ptep & PTE_W); | |||
assert(boot_pgdir[0] & PTE_U); | |||
assert(page_ref(p2) == 1); | |||
assert(page_insert(boot_pgdir, p1, PGSIZE, 0) == 0); | |||
assert(page_ref(p1) == 2); | |||
assert(page_ref(p2) == 0); | |||
assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL); | |||
assert(pa2page(*ptep) == p1); | |||
assert((*ptep & PTE_U) == 0); | |||
page_remove(boot_pgdir, 0x0); | |||
assert(page_ref(p1) == 1); | |||
assert(page_ref(p2) == 0); | |||
page_remove(boot_pgdir, PGSIZE); | |||
assert(page_ref(p1) == 0); | |||
assert(page_ref(p2) == 0); | |||
assert(page_ref(pa2page(boot_pgdir[0])) == 1); | |||
free_page(pa2page(boot_pgdir[0])); | |||
boot_pgdir[0] = 0; | |||
cprintf("check_pgdir() succeeded!\n"); | |||
} | |||
static void | |||
check_boot_pgdir(void) { | |||
pte_t *ptep; | |||
int i; | |||
for (i = 0; i < npage; i += PGSIZE) { | |||
assert((ptep = get_pte(boot_pgdir, (uintptr_t)KADDR(i), 0)) != NULL); | |||
assert(PTE_ADDR(*ptep) == i); | |||
} | |||
assert(PDE_ADDR(boot_pgdir[PDX(VPT)]) == PADDR(boot_pgdir)); | |||
assert(boot_pgdir[0] == 0); | |||
struct Page *p; | |||
p = alloc_page(); | |||
assert(page_insert(boot_pgdir, p, 0x100, PTE_W) == 0); | |||
assert(page_ref(p) == 1); | |||
assert(page_insert(boot_pgdir, p, 0x100 + PGSIZE, PTE_W) == 0); | |||
assert(page_ref(p) == 2); | |||
const char *str = "ucore: Hello world!!"; | |||
strcpy((void *)0x100, str); | |||
assert(strcmp((void *)0x100, (void *)(0x100 + PGSIZE)) == 0); | |||
*(char *)(page2kva(p) + 0x100) = '\0'; | |||
assert(strlen((const char *)0x100) == 0); | |||
free_page(p); | |||
free_page(pa2page(PDE_ADDR(boot_pgdir[0]))); | |||
boot_pgdir[0] = 0; | |||
cprintf("check_boot_pgdir() succeeded!\n"); | |||
} | |||
//perm2str - use string 'u,r,w,-' to present the permission | |||
static const char * | |||
perm2str(int perm) { | |||
static char str[4]; | |||
str[0] = (perm & PTE_U) ? 'u' : '-'; | |||
str[1] = 'r'; | |||
str[2] = (perm & PTE_W) ? 'w' : '-'; | |||
str[3] = '\0'; | |||
return str; | |||
} | |||
//get_pgtable_items - In [left, right] range of PDT or PT, find a continuous linear addr space | |||
// - (left_store*X_SIZE~right_store*X_SIZE) for PDT or PT | |||
// - X_SIZE=PTSIZE=4M, if PDT; X_SIZE=PGSIZE=4K, if PT | |||
// paramemters: | |||
// left: no use ??? | |||
// right: the high side of table's range | |||
// start: the low side of table's range | |||
// table: the beginning addr of table | |||
// left_store: the pointer of the high side of table's next range | |||
// right_store: the pointer of the low side of table's next range | |||
// return value: 0 - not a invalid item range, perm - a valid item range with perm permission | |||
static int | |||
get_pgtable_items(size_t left, size_t right, size_t start, uintptr_t *table, size_t *left_store, size_t *right_store) { | |||
if (start >= right) { | |||
return 0; | |||
} | |||
while (start < right && !(table[start] & PTE_P)) { | |||
start ++; | |||
} | |||
if (start < right) { | |||
if (left_store != NULL) { | |||
*left_store = start; | |||
} | |||
int perm = (table[start ++] & PTE_USER); | |||
while (start < right && (table[start] & PTE_USER) == perm) { | |||
start ++; | |||
} | |||
if (right_store != NULL) { | |||
*right_store = start; | |||
} | |||
return perm; | |||
} | |||
return 0; | |||
} | |||
//print_pgdir - print the PDT&PT | |||
void | |||
print_pgdir(void) { | |||
cprintf("-------------------- BEGIN --------------------\n"); | |||
size_t left, right = 0, perm; | |||
while ((perm = get_pgtable_items(0, NPDEENTRY, right, vpd, &left, &right)) != 0) { | |||
cprintf("PDE(%03x) %08x-%08x %08x %s\n", right - left, | |||
left * PTSIZE, right * PTSIZE, (right - left) * PTSIZE, perm2str(perm)); | |||
size_t l, r = left * NPTEENTRY; | |||
while ((perm = get_pgtable_items(left * NPTEENTRY, right * NPTEENTRY, r, vpt, &l, &r)) != 0) { | |||
cprintf(" |-- PTE(%05x) %08x-%08x %08x %s\n", r - l, | |||
l * PGSIZE, r * PGSIZE, (r - l) * PGSIZE, perm2str(perm)); | |||
} | |||
} | |||
cprintf("--------------------- END ---------------------\n"); | |||
} |
@ -0,0 +1,148 @@ | |||
#ifndef __KERN_MM_PMM_H__ | |||
#define __KERN_MM_PMM_H__ | |||
#include <defs.h> | |||
#include <mmu.h> | |||
#include <memlayout.h> | |||
#include <atomic.h> | |||
#include <assert.h> | |||
/* fork flags used in do_fork*/ | |||
#define CLONE_VM 0x00000100 // set if VM shared between processes | |||
#define CLONE_THREAD 0x00000200 // thread group | |||
// pmm_manager is a physical memory management class. A special pmm manager - XXX_pmm_manager | |||
// only needs to implement the methods in pmm_manager class, then XXX_pmm_manager can be used | |||
// by ucore to manage the total physical memory space. | |||
struct pmm_manager { | |||
const char *name; // XXX_pmm_manager's name | |||
void (*init)(void); // initialize internal description&management data structure | |||
// (free block list, number of free block) of XXX_pmm_manager | |||
void (*init_memmap)(struct Page *base, size_t n); // setup description&management data structcure according to | |||
// the initial free physical memory space | |||
struct Page *(*alloc_pages)(size_t n); // allocate >=n pages, depend on the allocation algorithm | |||
void (*free_pages)(struct Page *base, size_t n); // free >=n pages with "base" addr of Page descriptor structures(memlayout.h) | |||
size_t (*nr_free_pages)(void); // return the number of free pages | |||
void (*check)(void); // check the correctness of XXX_pmm_manager | |||
}; | |||
extern const struct pmm_manager *pmm_manager; | |||
extern pde_t *boot_pgdir; | |||
extern uintptr_t boot_cr3; | |||
void pmm_init(void); | |||
struct Page *alloc_pages(size_t n); | |||
void free_pages(struct Page *base, size_t n); | |||
size_t nr_free_pages(void); | |||
#define alloc_page() alloc_pages(1) | |||
#define free_page(page) free_pages(page, 1) | |||
pte_t *get_pte(pde_t *pgdir, uintptr_t la, bool create); | |||
struct Page *get_page(pde_t *pgdir, uintptr_t la, pte_t **ptep_store); | |||
void page_remove(pde_t *pgdir, uintptr_t la); | |||
int page_insert(pde_t *pgdir, struct Page *page, uintptr_t la, uint32_t perm); | |||
void load_esp0(uintptr_t esp0); | |||
void tlb_invalidate(pde_t *pgdir, uintptr_t la); | |||
struct Page *pgdir_alloc_page(pde_t *pgdir, uintptr_t la, uint32_t perm); | |||
void print_pgdir(void); | |||
/* * | |||
* PADDR - takes a kernel virtual address (an address that points above KERNBASE), | |||
* where the machine's maximum 256MB of physical memory is mapped and returns the | |||
* corresponding physical address. It panics if you pass it a non-kernel virtual address. | |||
* */ | |||
#define PADDR(kva) ({ \ | |||
uintptr_t __m_kva = (uintptr_t)(kva); \ | |||
if (__m_kva < KERNBASE) { \ | |||
panic("PADDR called with invalid kva %08lx", __m_kva); \ | |||
} \ | |||
__m_kva - KERNBASE; \ | |||
}) | |||
/* * | |||
* KADDR - takes a physical address and returns the corresponding kernel virtual | |||
* address. It panics if you pass an invalid physical address. | |||
* */ | |||
#define KADDR(pa) ({ \ | |||
uintptr_t __m_pa = (pa); \ | |||
size_t __m_ppn = PPN(__m_pa); \ | |||
if (__m_ppn >= npage) { \ | |||
panic("KADDR called with invalid pa %08lx", __m_pa); \ | |||
} \ | |||
(void *) (__m_pa + KERNBASE); \ | |||
}) | |||
extern struct Page *pages; | |||
extern size_t npage; | |||
static inline ppn_t | |||
page2ppn(struct Page *page) { | |||
return page - pages; | |||
} | |||
static inline uintptr_t | |||
page2pa(struct Page *page) { | |||
return page2ppn(page) << PGSHIFT; | |||
} | |||
static inline struct Page * | |||
pa2page(uintptr_t pa) { | |||
if (PPN(pa) >= npage) { | |||
panic("pa2page called with invalid pa"); | |||
} | |||
return &pages[PPN(pa)]; | |||
} | |||
static inline void * | |||
page2kva(struct Page *page) { | |||
return KADDR(page2pa(page)); | |||
} | |||
static inline struct Page * | |||
kva2page(void *kva) { | |||
return pa2page(PADDR(kva)); | |||
} | |||
static inline struct Page * | |||
pte2page(pte_t pte) { | |||
if (!(pte & PTE_P)) { | |||
panic("pte2page called with invalid pte"); | |||
} | |||
return pa2page(PTE_ADDR(pte)); | |||
} | |||
static inline struct Page * | |||
pde2page(pde_t pde) { | |||
return pa2page(PDE_ADDR(pde)); | |||
} | |||
static inline int | |||
page_ref(struct Page *page) { | |||
return page->ref; | |||
} | |||
static inline void | |||
set_page_ref(struct Page *page, int val) { | |||
page->ref = val; | |||
} | |||
static inline int | |||
page_ref_inc(struct Page *page) { | |||
page->ref += 1; | |||
return page->ref; | |||
} | |||
static inline int | |||
page_ref_dec(struct Page *page) { | |||
page->ref -= 1; | |||
return page->ref; | |||
} | |||
extern char bootstack[], bootstacktop[]; | |||
#endif /* !__KERN_MM_PMM_H__ */ | |||
@ -0,0 +1,10 @@ | |||
.text | |||
.globl kernel_thread_entry | |||
kernel_thread_entry: # void kernel_thread(void) | |||
pushl %edx # push arg | |||
call *%ebx # call fn | |||
pushl %eax # save the return value of fn(arg) | |||
call do_exit # call do_exit to terminate current thread | |||
@ -0,0 +1,434 @@ | |||
#include <proc.h> | |||
#include <kmalloc.h> | |||
#include <string.h> | |||
#include <sync.h> | |||
#include <pmm.h> | |||
#include <error.h> | |||
#include <sched.h> | |||
#include <elf.h> | |||
//#include <vmm.h> | |||
#include <trap.h> | |||
#include <stdio.h> | |||
#include <stdlib.h> | |||
#include <assert.h> | |||
/* ------------- process/thread mechanism design&implementation ------------- | |||
(an simplified Linux process/thread mechanism ) | |||
introduction: | |||
ucore implements a simple process/thread mechanism. process contains the independent memory sapce, at least one threads | |||
for execution, the kernel data(for management), processor state (for context switch), files(in lab6), etc. ucore needs to | |||
manage all these details efficiently. In ucore, a thread is just a special kind of process(share process's memory). | |||
------------------------------ | |||
process state : meaning -- reason | |||
PROC_UNINIT : uninitialized -- alloc_proc | |||
PROC_SLEEPING : sleeping -- try_free_pages, do_wait, do_sleep | |||
PROC_RUNNABLE : runnable(maybe running) -- proc_init, wakeup_proc, | |||
PROC_ZOMBIE : almost dead -- do_exit | |||
----------------------------- | |||
process state changing: | |||
alloc_proc RUNNING | |||
+ +--<----<--+ | |||
+ + proc_run + | |||
V +-->---->--+ | |||
PROC_UNINIT -- proc_init/wakeup_proc --> PROC_RUNNABLE -- try_free_pages/do_wait/do_sleep --> PROC_SLEEPING -- | |||
A + + | |||
| +--- do_exit --> PROC_ZOMBIE + | |||
+ + | |||
-----------------------wakeup_proc---------------------------------- | |||
----------------------------- | |||
process relations | |||
parent: proc->parent (proc is children) | |||
children: proc->cptr (proc is parent) | |||
older sibling: proc->optr (proc is younger sibling) | |||
younger sibling: proc->yptr (proc is older sibling) | |||
----------------------------- | |||
related syscall for process: | |||
SYS_exit : process exit, -->do_exit | |||
SYS_fork : create child process, dup mm -->do_fork-->wakeup_proc | |||
SYS_wait : wait process -->do_wait | |||
SYS_exec : after fork, process execute a program -->load a program and refresh the mm | |||
SYS_clone : create child thread -->do_fork-->wakeup_proc | |||
SYS_yield : process flag itself need resecheduling, -- proc->need_sched=1, then scheduler will rescheule this process | |||
SYS_sleep : process sleep -->do_sleep | |||
SYS_kill : kill process -->do_kill-->proc->flags |= PF_EXITING | |||
-->wakeup_proc-->do_wait-->do_exit | |||
SYS_getpid : get the process's pid | |||
*/ | |||
// the process set's list | |||
list_entry_t proc_list; | |||
// idle proc | |||
struct proc_struct *idleproc = NULL; | |||
// init procs | |||
struct proc_struct *initproc1 = NULL; | |||
struct proc_struct *initproc2 = NULL; | |||
// current proc | |||
struct proc_struct *current = NULL; | |||
static int nr_process = 0; | |||
void kernel_thread_entry(void); | |||
void forkrets(struct trapframe *tf); | |||
void switch_to(struct context *from, struct context *to); | |||
// alloc_proc - alloc a proc_struct and init all fields of proc_struct | |||
static struct proc_struct * | |||
alloc_proc(void) { | |||
struct proc_struct *proc = kmalloc(sizeof(struct proc_struct)); | |||
if (proc != NULL) { | |||
//LAB4:EXERCISE1 2012011346 | |||
/* | |||
* below fields in proc_struct need to be initialized | |||
* enum proc_state state; // Process state | |||
* int pid; // Process ID | |||
* int runs; // the running times of Proces | |||
* uintptr_t kstack; // Process kernel stack | |||
* volatile bool need_resched; // bool value: need to be rescheduled to release CPU? | |||
* struct proc_struct *parent; // the parent process | |||
* struct mm_struct *mm; // Process's memory management field | |||
* struct context context; // Switch here to run process | |||
* struct trapframe *tf; // Trap frame for current interrupt | |||
* uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT) | |||
* uint32_t flags; // Process flag | |||
* char name[PROC_NAME_LEN + 1]; // Process name | |||
*/ | |||
memset(proc, 0, sizeof(struct proc_struct)); | |||
proc->state = PROC_UNINIT; | |||
proc->pid = -1; | |||
proc->cr3 = boot_cr3; | |||
} | |||
return proc; | |||
} | |||
// set_proc_name - set the name of proc | |||
char * | |||
set_proc_name(struct proc_struct *proc, const char *name) { | |||
memset(proc->name, 0, sizeof(proc->name)); | |||
return memcpy(proc->name, name, PROC_NAME_LEN); | |||
} | |||
// get_proc_name - get the name of proc | |||
char * | |||
get_proc_name(struct proc_struct *proc) { | |||
static char name[PROC_NAME_LEN + 1]; | |||
memset(name, 0, sizeof(name)); | |||
return memcpy(name, proc->name, PROC_NAME_LEN); | |||
} | |||
// get_pid - alloc a unique pid for process | |||
static int | |||
get_pid(void) { | |||
static_assert(MAX_PID > MAX_PROCESS); | |||
struct proc_struct *proc; | |||
list_entry_t *list = &proc_list, *le; | |||
static int next_safe = MAX_PID, last_pid = MAX_PID; | |||
if (++ last_pid >= MAX_PID) { | |||
last_pid = 1; | |||
goto inside; | |||
} | |||
if (last_pid >= next_safe) { | |||
inside: | |||
next_safe = MAX_PID; | |||
repeat: | |||
le = list; | |||
while ((le = list_next(le)) != list) { | |||
proc = le2proc(le, list_link); | |||
if (proc->pid == last_pid) { | |||
if (++ last_pid >= next_safe) { | |||
if (last_pid >= MAX_PID) { | |||
last_pid = 1; | |||
} | |||
next_safe = MAX_PID; | |||
goto repeat; | |||
} | |||
} | |||
else if (proc->pid > last_pid && next_safe > proc->pid) { | |||
next_safe = proc->pid; | |||
} | |||
} | |||
} | |||
return last_pid; | |||
} | |||
// proc_run - make process "proc" running on cpu | |||
// NOTE: before call switch_to, should load base addr of "proc"'s new PDT | |||
void | |||
proc_run(struct proc_struct *proc) { | |||
if (proc != current) { | |||
bool intr_flag; | |||
struct proc_struct *prev = current, *next = proc; | |||
local_intr_save(intr_flag); | |||
{ | |||
current = proc; | |||
load_esp0(next->kstack + KSTACKSIZE); | |||
lcr3(next->cr3); | |||
switch_to(&(prev->context), &(next->context)); | |||
} | |||
local_intr_restore(intr_flag); | |||
} | |||
} | |||
// forkret -- the first kernel entry point of a new thread/process | |||
// NOTE: the addr of forkret is setted in copy_thread function | |||
// after switch_to, the current proc will execute here. | |||
static void | |||
forkret(void) { | |||
forkrets(current->tf); | |||
} | |||
// find_proc - find proc frome proc hash_list according to pid | |||
struct proc_struct * | |||
find_proc(int pid) { | |||
if (0 < pid && pid < MAX_PID) { | |||
list_entry_t *list = &proc_list, *le = list; | |||
while ((le = list_next(le)) != list) { | |||
struct proc_struct *proc = le2proc(le, list_link); | |||
if (proc->pid == pid) { | |||
return proc; | |||
} | |||
} | |||
} | |||
return NULL; | |||
} | |||
// kernel_thread - create a kernel thread using "fn" function | |||
// NOTE: the contents of temp trapframe tf will be copied to | |||
// proc->tf in do_fork-->copy_thread function | |||
int | |||
kernel_thread(int (*fn)(void *), void *arg, uint32_t clone_flags) { | |||
struct trapframe tf; | |||
memset(&tf, 0, sizeof(struct trapframe)); | |||
tf.tf_cs = KERNEL_CS; | |||
tf.tf_ds = tf.tf_es = tf.tf_ss = KERNEL_DS; | |||
tf.tf_regs.reg_ebx = (uint32_t)fn; | |||
tf.tf_regs.reg_edx = (uint32_t)arg; | |||
tf.tf_eip = (uint32_t)kernel_thread_entry; | |||
return do_fork(clone_flags | CLONE_VM, 0, &tf); | |||
} | |||
// setup_kstack - alloc pages with size KSTACKPAGE as process kernel stack | |||
static int | |||
setup_kstack(struct proc_struct *proc) { | |||
struct Page *page = alloc_pages(KSTACKPAGE); | |||
if (page != NULL) { | |||
proc->kstack = (uintptr_t)page2kva(page); | |||
return 0; | |||
} | |||
return -E_NO_MEM; | |||
} | |||
// put_kstack - free the memory space of process kernel stack | |||
static void | |||
put_kstack(struct proc_struct *proc) { | |||
free_pages(kva2page((void *)(proc->kstack)), KSTACKPAGE); | |||
} | |||
// copy_thread - setup the trapframe on the process's kernel stack top and | |||
// - setup the kernel entry point and stack of process | |||
static void | |||
copy_thread(struct proc_struct *proc, uintptr_t esp, struct trapframe *tf) { | |||
proc->tf = (struct trapframe *)(proc->kstack + KSTACKSIZE) - 1; | |||
*(proc->tf) = *tf; | |||
proc->tf->tf_regs.reg_eax = 0; | |||
proc->tf->tf_esp = esp; | |||
proc->tf->tf_eflags |= FL_IF; | |||
proc->context.eip = (uintptr_t)forkret; | |||
proc->context.esp = (uintptr_t)(proc->tf); | |||
} | |||
/* do_fork - parent process for a new child process | |||
* @clone_flags: used to guide how to clone the child process | |||
* @stack: the parent's user stack pointer. if stack==0, It means to fork a kernel thread. | |||
* @tf: the trapframe info, which will be copied to child process's proc->tf | |||
*/ | |||
int | |||
do_fork(uint32_t clone_flags, uintptr_t stack, struct trapframe *tf) { | |||
int ret = -E_NO_FREE_PROC; | |||
struct proc_struct *proc; | |||
if (nr_process >= MAX_PROCESS) { | |||
goto fork_out; | |||
} | |||
ret = -E_NO_MEM; | |||
//LAB4:EXERCISE2 2012011346 | |||
/* | |||
* Some Useful MACROs, Functions and DEFINEs, you can use them in below implementation. | |||
* MACROs or Functions: | |||
* alloc_proc: create a proc struct and init fields (lab4:exercise1) | |||
* setup_kstack: alloc pages with size KSTACKPAGE as process kernel stack | |||
* copy_thread: setup the trapframe on the process's kernel stack top and | |||
* setup the kernel entry point and stack of process | |||
* hash_proc: add proc into proc hash_list | |||
* get_pid: alloc a unique pid for process | |||
* wakup_proc: set proc->state = PROC_RUNNABLE | |||
* VARIABLES: | |||
* proc_list: the process set's list | |||
* nr_process: the number of process set | |||
*/ | |||
// 1. call alloc_proc to allocate a proc_struct | |||
proc = alloc_proc(); | |||
proc->pid = get_pid(); | |||
// 2. call setup_kstack to allocate a kernel stack for child process | |||
setup_kstack(proc); | |||
// 3. call copy_thread to setup tf & context in proc_struct | |||
copy_thread(proc, stack, tf); | |||
// 4. insert proc_struct into proc_list | |||
list_add_before(&proc_list, &proc->list_link); | |||
// 5. call wakup_proc to make the new child process RUNNABLE | |||
wakeup_proc(proc); | |||
// 7. set ret vaule using child proc's pid | |||
nr_process++; | |||
ret = proc->pid; | |||
// 8. set parent | |||
proc->parent=current; | |||
fork_out: | |||
return ret; | |||
bad_fork_cleanup_kstack: | |||
put_kstack(proc); | |||
bad_fork_cleanup_proc: | |||
kfree(proc); | |||
goto fork_out; | |||
} | |||
// remove_links - clean the relation links of process | |||
static void | |||
remove_links(struct proc_struct *proc) { | |||
list_del(&(proc->list_link)); | |||
nr_process --; | |||
} | |||
// do_wait - wait one OR any children with PROC_ZOMBIE state, and free memory space of kernel stack | |||
// - proc struct of this child. | |||
// NOTE: only after do_wait function, all resources of the child proces are free. | |||
int | |||
do_wait(int pid, int *code_store) { | |||
struct proc_struct *proc; | |||
bool intr_flag, haskid; | |||
repeat: | |||
cprintf("do_wait: begin\n"); | |||
haskid = 0; | |||
list_entry_t *list = &proc_list, *le = list; | |||
while ((le = list_next(le)) != list) { | |||
proc = le2proc(le, list_link); | |||
if (proc != NULL) { | |||
haskid = 1; | |||
if (proc->state == PROC_ZOMBIE) { | |||
goto found; | |||
} | |||
} | |||
} | |||
if (haskid) { | |||
cprintf("do_wait: has kid begin\n"); | |||
current->state = PROC_SLEEPING; | |||
current->wait_state = WT_CHILD; | |||
schedule(); | |||
goto repeat; | |||
} | |||
return -E_BAD_PROC; | |||
found: | |||
cprintf("do_wait: has kid find child pid%d\n",proc->pid); | |||
if (proc == idleproc ) { | |||
panic("wait idleproc \n"); | |||
} | |||
local_intr_save(intr_flag); | |||
{ | |||
remove_links(proc); | |||
} | |||
local_intr_restore(intr_flag); | |||
put_kstack(proc); | |||
kfree(proc); | |||
return 0; | |||
} | |||
// do_exit - called by sys_exit | |||
// 1. set process' state as PROC_ZOMBIE, then call wakeup_proc(parent) to ask parent reclaim itself. | |||
// 2. call scheduler to switch to other process | |||
int | |||
do_exit(int error_code) { | |||
if (current == idleproc) { | |||
panic("idleproc exit.\n"); | |||
} | |||
cprintf(" do_exit: proc pid %d will exit\n", current->pid); | |||
cprintf(" do_exit: proc parent %x\n", current->parent); | |||
current->state = PROC_ZOMBIE; | |||
bool intr_flag; | |||
struct proc_struct *proc; | |||
local_intr_save(intr_flag); | |||
{ | |||
proc = current->parent; | |||
if (proc->wait_state == WT_CHILD) { | |||
wakeup_proc(proc); | |||
} | |||
} | |||
local_intr_restore(intr_flag); | |||
schedule(); | |||
panic("do_exit will not return!! %d.\n", current->pid); | |||
} | |||
// init_main - the second kernel thread used to create user_main kernel threads | |||
static int | |||
init_main(void *arg) { | |||
cprintf(" kernel_thread, pid = %d, name = %s\n", current->pid, get_proc_name(current)); | |||
schedule(); | |||
cprintf(" kernel_thread, pid = %d, name = %s , arg %s \n", current->pid, get_proc_name(current), (const char *)arg); | |||
schedule(); | |||
cprintf(" kernel_thread, pid = %d, name = %s , en.., Bye, Bye. :)\n",current->pid, get_proc_name(current)); | |||
return 0; | |||
} | |||
// proc_init - set up the first kernel thread idleproc "idle" by itself and | |||
// - create the second kernel thread init_main | |||
void | |||
proc_init(void) { | |||
int i; | |||
list_init(&proc_list); | |||
if ((idleproc = alloc_proc()) == NULL) { | |||
panic("cannot alloc idleproc.\n"); | |||
} | |||
idleproc->pid = 0; | |||
idleproc->state = PROC_RUNNABLE; | |||
idleproc->kstack = (uintptr_t)bootstack; | |||
idleproc->need_resched = 1; | |||
set_proc_name(idleproc, "idle"); | |||
nr_process ++; | |||
current = idleproc; | |||
int pid1= kernel_thread(init_main, "init main1: Hello world!!", 0); | |||
int pid2= kernel_thread(init_main, "init main2: Hello world!!", 0); | |||
if (pid1 <= 0 || pid2<=0) { | |||
panic("create kernel thread init_main1 or 2 failed.\n"); | |||
} | |||
initproc1 = find_proc(pid1); | |||
initproc2 = find_proc(pid2); | |||
set_proc_name(initproc1, "init1"); | |||
set_proc_name(initproc2, "init2"); | |||
cprintf("proc_init:: Created kernel thread init_main--> pid: %d, name: %s\n",initproc1->pid, initproc1->name); | |||
cprintf("proc_init:: Created kernel thread init_main--> pid: %d, name: %s\n",initproc2->pid, initproc2->name); | |||
assert(idleproc != NULL && idleproc->pid == 0); | |||
} | |||
// cpu_idle - at the end of kern_init, the first kernel thread idleproc will do below works | |||
void | |||
cpu_idle(void) { | |||
while (1) { | |||
if (current->need_resched) { | |||
schedule(); | |||
} | |||
} | |||
} | |||
@ -0,0 +1,77 @@ | |||
#ifndef __KERN_PROCESS_PROC_H__ | |||
#define __KERN_PROCESS_PROC_H__ | |||
#include <defs.h> | |||
#include <list.h> | |||
#include <trap.h> | |||
#include <memlayout.h> | |||
// process's state in his life cycle | |||
enum proc_state { | |||
PROC_UNINIT = 0, // uninitialized | |||
PROC_SLEEPING, // sleeping | |||
PROC_RUNNABLE, // runnable(maybe running) | |||
PROC_ZOMBIE, // almost dead, and wait parent proc to reclaim his resource | |||
}; | |||
// Saved registers for kernel context switches. | |||
// Don't need to save all the %fs etc. segment registers, | |||
// because they are constant across kernel contexts. | |||
// Save all the regular registers so we don't need to care | |||
// which are caller save, but not the return register %eax. | |||
// (Not saving %eax just simplifies the switching code.) | |||
// The layout of context must match code in switch.S. | |||
struct context { | |||
uint32_t eip; | |||
uint32_t esp; | |||
uint32_t ebx; | |||
uint32_t ecx; | |||
uint32_t edx; | |||
uint32_t esi; | |||
uint32_t edi; | |||
uint32_t ebp; | |||
}; | |||
#define PROC_NAME_LEN 15 | |||
#define MAX_PROCESS 4096 | |||
#define MAX_PID (MAX_PROCESS * 2) | |||
extern list_entry_t proc_list; | |||
struct proc_struct { | |||
enum proc_state state; // Process state | |||
int pid; // Process ID | |||
int runs; // the running times of Proces | |||
uintptr_t kstack; // Process kernel stack | |||
volatile bool need_resched; // bool value: need to be rescheduled to release CPU? | |||
struct proc_struct *parent; // the parent process | |||
struct context context; // Switch here to run process | |||
struct trapframe *tf; // Trap frame for current interrupt | |||
uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT) | |||
uint32_t flags; // Process flag | |||
uint32_t wait_state; // waiting state | |||
char name[PROC_NAME_LEN + 1]; // Process name | |||
list_entry_t list_link; // Process link list | |||
}; | |||
#define WT_CHILD (0x00000001) | |||
#define le2proc(le, member) \ | |||
to_struct((le), struct proc_struct, member) | |||
extern struct proc_struct *idleproc, *initproc, *current; | |||
void proc_init(void); | |||
void proc_run(struct proc_struct *proc); | |||
int kernel_thread(int (*fn)(void *), void *arg, uint32_t clone_flags); | |||
char *set_proc_name(struct proc_struct *proc, const char *name); | |||
char *get_proc_name(struct proc_struct *proc); | |||
void cpu_idle(void) __attribute__((noreturn)); | |||
struct proc_struct *find_proc(int pid); | |||
int do_fork(uint32_t clone_flags, uintptr_t stack, struct trapframe *tf); | |||
int do_exit(int error_code); | |||
#endif /* !__KERN_PROCESS_PROC_H__ */ | |||
@ -0,0 +1,30 @@ | |||
.text | |||
.globl switch_to | |||
switch_to: # switch_to(from, to) | |||
# save from's registers | |||
movl 4(%esp), %eax # eax points to from | |||
popl 0(%eax) # save eip !popl | |||
movl %esp, 4(%eax) | |||
movl %ebx, 8(%eax) | |||
movl %ecx, 12(%eax) | |||
movl %edx, 16(%eax) | |||
movl %esi, 20(%eax) | |||
movl %edi, 24(%eax) | |||
movl %ebp, 28(%eax) | |||
# restore to's registers | |||
movl 4(%esp), %eax # not 8(%esp): popped return address already | |||
# eax now points to to | |||
movl 28(%eax), %ebp | |||
movl 24(%eax), %edi | |||
movl 20(%eax), %esi | |||
movl 16(%eax), %edx | |||
movl 12(%eax), %ecx | |||
movl 8(%eax), %ebx | |||
movl 4(%eax), %esp | |||
pushl 0(%eax) # push eip | |||
ret | |||
@ -0,0 +1,41 @@ | |||
#include <list.h> | |||
#include <sync.h> | |||
#include <proc.h> | |||
#include <sched.h> | |||
#include <assert.h> | |||
void | |||
wakeup_proc(struct proc_struct *proc) { | |||
assert(proc->state != PROC_ZOMBIE && proc->state != PROC_RUNNABLE); | |||
proc->state = PROC_RUNNABLE; | |||
} | |||
void | |||
schedule(void) { | |||
bool intr_flag; | |||
list_entry_t *le, *last; | |||
struct proc_struct *next = NULL; | |||
local_intr_save(intr_flag); | |||
{ | |||
current->need_resched = 0; | |||
last = (current == idleproc) ? &proc_list : &(current->list_link); | |||
le = last; | |||
do { | |||
if ((le = list_next(le)) != &proc_list) { | |||
next = le2proc(le, list_link); | |||
if (next->state == PROC_RUNNABLE) { | |||
break; | |||
} | |||
} | |||
} while (le != last); | |||
if (next == NULL || next->state != PROC_RUNNABLE) { | |||
next = idleproc; | |||
} | |||
next->runs ++; | |||
if (next != current) { | |||
proc_run(next); | |||
} | |||
} | |||
local_intr_restore(intr_flag); | |||
} | |||
@ -0,0 +1,10 @@ | |||
#ifndef __KERN_SCHEDULE_SCHED_H__ | |||
#define __KERN_SCHEDULE_SCHED_H__ | |||
#include <proc.h> | |||
void schedule(void); | |||
void wakeup_proc(struct proc_struct *proc); | |||
#endif /* !__KERN_SCHEDULE_SCHED_H__ */ | |||
@ -0,0 +1,28 @@ | |||
#ifndef __KERN_SYNC_SYNC_H__ | |||
#define __KERN_SYNC_SYNC_H__ | |||
#include <x86.h> | |||
#include <intr.h> | |||
#include <mmu.h> | |||
static inline bool | |||
__intr_save(void) { | |||
if (read_eflags() & FL_IF) { | |||
intr_disable(); | |||
return 1; | |||
} | |||
return 0; | |||
} | |||
static inline void | |||
__intr_restore(bool flag) { | |||
if (flag) { | |||
intr_enable(); | |||
} | |||
} | |||
#define local_intr_save(x) do { x = __intr_save(); } while (0) | |||
#define local_intr_restore(x) __intr_restore(x); | |||
#endif /* !__KERN_SYNC_SYNC_H__ */ | |||
@ -0,0 +1,240 @@ | |||
#include <defs.h> | |||
#include <mmu.h> | |||
#include <memlayout.h> | |||
#include <clock.h> | |||
#include <trap.h> | |||
#include <x86.h> | |||
#include <stdio.h> | |||
#include <assert.h> | |||
#include <console.h> | |||
//#include <vmm.h> | |||
//#include <swap.h> | |||
#include <kdebug.h> | |||
#define TICK_NUM 100 | |||
static void print_ticks() { | |||
cprintf("%d ticks\n",TICK_NUM); | |||
#ifdef DEBUG_GRADE | |||
cprintf("End of Test.\n"); | |||
panic("EOT: kernel seems ok."); | |||
#endif | |||
} | |||
/* * | |||
* Interrupt descriptor table: | |||
* | |||
* Must be built at run time because shifted function addresses can't | |||
* be represented in relocation records. | |||
* */ | |||
static struct gatedesc idt[256] = {{0}}; | |||
static struct pseudodesc idt_pd = { | |||
sizeof(idt) - 1, (uintptr_t)idt | |||
}; | |||
/* idt_init - initialize IDT to each of the entry points in kern/trap/vectors.S */ | |||
void | |||
idt_init(void) { | |||
/* LAB1 2012011346 : STEP 2 */ | |||
/* (1) Where are the entry addrs of each Interrupt Service Routine (ISR)? | |||
* All ISR's entry addrs are stored in __vectors. where is uintptr_t __vectors[] ? | |||
* __vectors[] is in kern/trap/vector.S which is produced by tools/vector.c | |||
* (try "make" command in lab1, then you will find vector.S in kern/trap DIR) | |||
* You can use "extern uintptr_t __vectors[];" to define this extern variable which will be used later. | |||
* (2) Now you should setup the entries of ISR in Interrupt Description Table (IDT). | |||
* Can you see idt[256] in this file? Yes, it's IDT! you can use SETGATE macro to setup each item of IDT | |||
* (3) After setup the contents of IDT, you will let CPU know where is the IDT by using 'lidt' instruction. | |||
* You don't know the meaning of this instruction? just google it! and check the libs/x86.h to know more. | |||
* Notice: the argument of lidt is idt_pd. try to find it! | |||
*/ | |||
extern uintptr_t __vectors[]; | |||
int i; | |||
for (i = 0; i < 256; i++) { | |||
if (i != T_SYSCALL) { | |||
SETGATE(idt[i], 0, 8, __vectors[i], 0); | |||
} else { | |||
SETGATE(idt[i], 1, 8, __vectors[i], 3); | |||
} | |||
} | |||
lidt(&idt_pd); | |||
} | |||
static const char * | |||
trapname(int trapno) { | |||
static const char * const excnames[] = { | |||
"Divide error", | |||
"Debug", | |||
"Non-Maskable Interrupt", | |||
"Breakpoint", | |||
"Overflow", | |||
"BOUND Range Exceeded", | |||
"Invalid Opcode", | |||
"Device Not Available", | |||
"Double Fault", | |||
"Coprocessor Segment Overrun", | |||
"Invalid TSS", | |||
"Segment Not Present", | |||
"Stack Fault", | |||
"General Protection", | |||
"Page Fault", | |||
"(unknown trap)", | |||
"x87 FPU Floating-Point Error", | |||
"Alignment Check", | |||
"Machine-Check", | |||
"SIMD Floating-Point Exception" | |||
}; | |||
if (trapno < sizeof(excnames)/sizeof(const char * const)) { | |||
return excnames[trapno]; | |||
} | |||
if (trapno >= IRQ_OFFSET && trapno < IRQ_OFFSET + 16) { | |||
return "Hardware Interrupt"; | |||
} | |||
return "(unknown trap)"; | |||
} | |||
/* trap_in_kernel - test if trap happened in kernel */ | |||
bool | |||
trap_in_kernel(struct trapframe *tf) { | |||
return (tf->tf_cs == (uint16_t)KERNEL_CS); | |||
} | |||
static const char *IA32flags[] = { | |||
"CF", NULL, "PF", NULL, "AF", NULL, "ZF", "SF", | |||
"TF", "IF", "DF", "OF", NULL, NULL, "NT", NULL, | |||
"RF", "VM", "AC", "VIF", "VIP", "ID", NULL, NULL, | |||
}; | |||
void | |||
print_trapframe(struct trapframe *tf) { | |||
cprintf("trapframe at %p\n", tf); | |||
print_regs(&tf->tf_regs); | |||
cprintf(" ds 0x----%04x\n", tf->tf_ds); | |||
cprintf(" es 0x----%04x\n", tf->tf_es); | |||
cprintf(" fs 0x----%04x\n", tf->tf_fs); | |||
cprintf(" gs 0x----%04x\n", tf->tf_gs); | |||
cprintf(" trap 0x%08x %s\n", tf->tf_trapno, trapname(tf->tf_trapno)); | |||
cprintf(" err 0x%08x\n", tf->tf_err); | |||
cprintf(" eip 0x%08x\n", tf->tf_eip); | |||
cprintf(" cs 0x----%04x\n", tf->tf_cs); | |||
cprintf(" flag 0x%08x ", tf->tf_eflags); | |||
int i, j; | |||
for (i = 0, j = 1; i < sizeof(IA32flags) / sizeof(IA32flags[0]); i ++, j <<= 1) { | |||
if ((tf->tf_eflags & j) && IA32flags[i] != NULL) { | |||
cprintf("%s,", IA32flags[i]); | |||
} | |||
} | |||
cprintf("IOPL=%d\n", (tf->tf_eflags & FL_IOPL_MASK) >> 12); | |||
if (!trap_in_kernel(tf)) { | |||
cprintf(" esp 0x%08x\n", tf->tf_esp); | |||
cprintf(" ss 0x----%04x\n", tf->tf_ss); | |||
} | |||
} | |||
void | |||
print_regs(struct pushregs *regs) { | |||
cprintf(" edi 0x%08x\n", regs->reg_edi); | |||
cprintf(" esi 0x%08x\n", regs->reg_esi); | |||
cprintf(" ebp 0x%08x\n", regs->reg_ebp); | |||
cprintf(" oesp 0x%08x\n", regs->reg_oesp); | |||
cprintf(" ebx 0x%08x\n", regs->reg_ebx); | |||
cprintf(" edx 0x%08x\n", regs->reg_edx); | |||
cprintf(" ecx 0x%08x\n", regs->reg_ecx); | |||
cprintf(" eax 0x%08x\n", regs->reg_eax); | |||
} | |||
/* trap_dispatch - dispatch based on what type of trap occurred */ | |||
static inline void | |||
print_pgfault(struct trapframe *tf) { | |||
/* error_code: | |||
* bit 0 == 0 means no page found, 1 means protection fault | |||
* bit 1 == 0 means read, 1 means write | |||
* bit 2 == 0 means kernel, 1 means user | |||
* */ | |||
cprintf("page fault at 0x%08x: %c/%c [%s].\n", rcr2(), | |||
(tf->tf_err & 4) ? 'U' : 'K', | |||
(tf->tf_err & 2) ? 'W' : 'R', | |||
(tf->tf_err & 1) ? "protection fault" : "no page found"); | |||
} | |||
//static int | |||
//pgfault_handler(struct trapframe *tf) { | |||
// extern struct mm_struct *check_mm_struct; | |||
// print_pgfault(tf); | |||
// if (check_mm_struct != NULL) { | |||
// return do_pgfault(check_mm_struct, tf->tf_err, rcr2()); | |||
// } | |||
// panic("unhandled page fault.\n"); | |||
//} | |||
static volatile int in_swap_tick_event = 0; | |||
extern struct mm_struct *check_mm_struct; | |||
static void | |||
trap_dispatch(struct trapframe *tf) { | |||
char c; | |||
static int count = 0; | |||
int ret; | |||
switch (tf->tf_trapno) { | |||
case T_PGFLT: //page fault | |||
panic("pgfault execption!!!\n"); | |||
break; | |||
case IRQ_OFFSET + IRQ_TIMER: | |||
#if 0 | |||
LAB3 : If some page replacement algorithm(such as CLOCK PRA) need tick to change the priority of pages, | |||
then you can add code here. | |||
#endif | |||
/* LAB1 2012011346 : STEP 3 */ | |||
/* handle the timer interrupt */ | |||
/* (1) After a timer interrupt, you should record this event using a global variable (increase it), such as ticks in kern/driver/clock.c | |||
* (2) Every TICK_NUM cycle, you can print some info using a funciton, such as print_ticks(). | |||
* (3) Too Simple? Yes, I think so! | |||
*/ | |||
count++; | |||
if (count % 100 == 0) { | |||
print_ticks(); | |||
count = 0; | |||
} | |||
break; | |||
case IRQ_OFFSET + IRQ_COM1: | |||
c = cons_getc(); | |||
cprintf("serial [%03d] %c\n", c, c); | |||
break; | |||
case IRQ_OFFSET + IRQ_KBD: | |||
c = cons_getc(); | |||
cprintf("kbd [%03d] %c\n", c, c); | |||
break; | |||
//LAB1 CHALLENGE 1 : 2012011346 you should modify below codes. | |||
case T_SWITCH_TOU: | |||
case T_SWITCH_TOK: | |||
panic("T_SWITCH_** ??\n"); | |||
break; | |||
case IRQ_OFFSET + IRQ_IDE1: | |||
case IRQ_OFFSET + IRQ_IDE2: | |||
/* do nothing */ | |||
break; | |||
default: | |||
// in kernel, it must be a mistake | |||
if ((tf->tf_cs & 3) == 0) { | |||
print_trapframe(tf); | |||
panic("unexpected trap in kernel.\n"); | |||
} | |||
} | |||
} | |||
/* * | |||
* trap - handles or dispatches an exception/interrupt. if and when trap() returns, | |||
* the code in kern/trap/trapentry.S restores the old CPU state saved in the | |||
* trapframe and then uses the iret instruction to return from the exception. | |||
* */ | |||
void | |||
trap(struct trapframe *tf) { | |||
// dispatch based on what type of trap occurred | |||
trap_dispatch(tf); | |||
} | |||
@ -0,0 +1,91 @@ | |||
#ifndef __KERN_TRAP_TRAP_H__ | |||
#define __KERN_TRAP_TRAP_H__ | |||
#include <defs.h> | |||
/* Trap Numbers */ | |||
/* Processor-defined: */ | |||
#define T_DIVIDE 0 // divide error | |||
#define T_DEBUG 1 // debug exception | |||
#define T_NMI 2 // non-maskable interrupt | |||
#define T_BRKPT 3 // breakpoint | |||
#define T_OFLOW 4 // overflow | |||
#define T_BOUND 5 // bounds check | |||
#define T_ILLOP 6 // illegal opcode | |||
#define T_DEVICE 7 // device not available | |||
#define T_DBLFLT 8 // double fault | |||
// #define T_COPROC 9 // reserved (not used since 486) | |||
#define T_TSS 10 // invalid task switch segment | |||
#define T_SEGNP 11 // segment not present | |||
#define T_STACK 12 // stack exception | |||
#define T_GPFLT 13 // general protection fault | |||
#define T_PGFLT 14 // page fault | |||
// #define T_RES 15 // reserved | |||
#define T_FPERR 16 // floating point error | |||
#define T_ALIGN 17 // aligment check | |||
#define T_MCHK 18 // machine check | |||
#define T_SIMDERR 19 // SIMD floating point error | |||
#define T_SYSCALL 0x80 // SYSCALL, ONLY FOR THIS PROJ | |||
/* Hardware IRQ numbers. We receive these as (IRQ_OFFSET + IRQ_xx) */ | |||
#define IRQ_OFFSET 32 // IRQ 0 corresponds to int IRQ_OFFSET | |||
#define IRQ_TIMER 0 | |||
#define IRQ_KBD 1 | |||
#define IRQ_COM1 4 | |||
#define IRQ_IDE1 14 | |||
#define IRQ_IDE2 15 | |||
#define IRQ_ERROR 19 | |||
#define IRQ_SPURIOUS 31 | |||
/* * | |||
* These are arbitrarily chosen, but with care not to overlap | |||
* processor defined exceptions or interrupt vectors. | |||
* */ | |||
#define T_SWITCH_TOU 120 // user/kernel switch | |||
#define T_SWITCH_TOK 121 // user/kernel switch | |||
/* registers as pushed by pushal */ | |||
struct pushregs { | |||
uint32_t reg_edi; | |||
uint32_t reg_esi; | |||
uint32_t reg_ebp; | |||
uint32_t reg_oesp; /* Useless */ | |||
uint32_t reg_ebx; | |||
uint32_t reg_edx; | |||
uint32_t reg_ecx; | |||
uint32_t reg_eax; | |||
}; | |||
struct trapframe { | |||
struct pushregs tf_regs; | |||
uint16_t tf_gs; | |||
uint16_t tf_padding0; | |||
uint16_t tf_fs; | |||
uint16_t tf_padding1; | |||
uint16_t tf_es; | |||
uint16_t tf_padding2; | |||
uint16_t tf_ds; | |||
uint16_t tf_padding3; | |||
uint32_t tf_trapno; | |||
/* below here defined by x86 hardware */ | |||
uint32_t tf_err; | |||
uintptr_t tf_eip; | |||
uint16_t tf_cs; | |||
uint16_t tf_padding4; | |||
uint32_t tf_eflags; | |||
/* below here only when crossing rings, such as from user to kernel */ | |||
uintptr_t tf_esp; | |||
uint16_t tf_ss; | |||
uint16_t tf_padding5; | |||
} __attribute__((packed)); | |||
void idt_init(void); | |||
void print_trapframe(struct trapframe *tf); | |||
void print_regs(struct pushregs *regs); | |||
bool trap_in_kernel(struct trapframe *tf); | |||
#endif /* !__KERN_TRAP_TRAP_H__ */ | |||
@ -0,0 +1,49 @@ | |||
#include <memlayout.h> | |||
# vectors.S sends all traps here. | |||
.text | |||
.globl __alltraps | |||
__alltraps: | |||
# push registers to build a trap frame | |||
# therefore make the stack look like a struct trapframe | |||
pushl %ds | |||
pushl %es | |||
pushl %fs | |||
pushl %gs | |||
pushal | |||
# load GD_KDATA into %ds and %es to set up data segments for kernel | |||
movl $GD_KDATA, %eax | |||
movw %ax, %ds | |||
movw %ax, %es | |||
# push %esp to pass a pointer to the trapframe as an argument to trap() | |||
pushl %esp | |||
# call trap(tf), where tf=%esp | |||
call trap | |||
# pop the pushed stack pointer | |||
popl %esp | |||
# return falls through to trapret... | |||
.globl __trapret | |||
__trapret: | |||
# restore registers from stack | |||
popal | |||
# restore %ds, %es, %fs and %gs | |||
popl %gs | |||
popl %fs | |||
popl %es | |||
popl %ds | |||
# get rid of the trap number and error code | |||
addl $0x8, %esp | |||
iret | |||
.globl forkrets | |||
forkrets: | |||
# set stack to this new process's trapframe | |||
movl 4(%esp), %esp | |||
jmp __trapret |
@ -0,0 +1,26 @@ | |||
# lab4 spoc discuss | |||
## 掌握知识点 | |||
1. 内核线程的启动、运行、就绪、等待、退出 | |||
2. 内核线程的管理与简单调度 | |||
3. 内核线程的切换过程 | |||
请完成如下练习,完成代码填写,并形成spoc练习报告 | |||
## 1. 分析并描述创建分配进程的过程 | |||
> 注意 state、pid、cr3,context,trapframe的含义 | |||
## 练习2:分析并描述新创建的内核线程是如何分配资源的 | |||
###设计实现 | |||
> 注意 理解对kstack, trapframe, context等的初始化 | |||
当前进程中唯一,操作系统的整个生命周期不唯一,在get_pid中会循环使用pid,耗尽会等待 | |||
## 练习3:阅读代码,在现有基础上再增加一个内核线程,并通过增加cprintf函数到ucore代码中 | |||
能够把进程的生命周期和调度动态执行过程完整地展现出来 | |||
## 扩展练习4:增加可以睡眠的内核线程,睡眠的条件和唤醒的条件可自行设计,并给出测试用例,并在spoc练习报告中给出设计实现说明 |
@ -0,0 +1,57 @@ | |||
#ifndef __LIBS_ATOMIC_H__ | |||
#define __LIBS_ATOMIC_H__ | |||
/* Atomic operations that C can't guarantee us. Useful for resource counting etc.. */ | |||
static inline void set_bit(int nr, volatile void *addr) __attribute__((always_inline)); | |||
static inline void clear_bit(int nr, volatile void *addr) __attribute__((always_inline)); | |||
static inline void change_bit(int nr, volatile void *addr) __attribute__((always_inline)); | |||
static inline bool test_bit(int nr, volatile void *addr) __attribute__((always_inline)); | |||
/* * | |||
* set_bit - Atomically set a bit in memory | |||
* @nr: the bit to set | |||
* @addr: the address to start counting from | |||
* | |||
* Note that @nr may be almost arbitrarily large; this function is not | |||
* restricted to acting on a single-word quantity. | |||
* */ | |||
static inline void | |||
set_bit(int nr, volatile void *addr) { | |||
asm volatile ("btsl %1, %0" :"=m" (*(volatile long *)addr) : "Ir" (nr)); | |||
} | |||
/* * | |||
* clear_bit - Atomically clears a bit in memory | |||
* @nr: the bit to clear | |||
* @addr: the address to start counting from | |||
* */ | |||
static inline void | |||
clear_bit(int nr, volatile void *addr) { | |||
asm volatile ("btrl %1, %0" :"=m" (*(volatile long *)addr) : "Ir" (nr)); | |||
} | |||
/* * | |||
* change_bit - Atomically toggle a bit in memory | |||
* @nr: the bit to change | |||
* @addr: the address to start counting from | |||
* */ | |||
static inline void | |||
change_bit(int nr, volatile void *addr) { | |||
asm volatile ("btcl %1, %0" :"=m" (*(volatile long *)addr) : "Ir" (nr)); | |||
} | |||
/* * | |||
* test_bit - Determine whether a bit is set | |||
* @nr: the bit to test | |||
* @addr: the address to count from | |||
* */ | |||
static inline bool | |||
test_bit(int nr, volatile void *addr) { | |||
int oldbit; | |||
asm volatile ("btl %2, %1; sbbl %0,%0" : "=r" (oldbit) : "m" (*(volatile long *)addr), "Ir" (nr)); | |||
return oldbit != 0; | |||
} | |||
#endif /* !__LIBS_ATOMIC_H__ */ | |||
@ -0,0 +1,68 @@ | |||
#ifndef __LIBS_DEFS_H__ | |||
#define __LIBS_DEFS_H__ | |||
#ifndef NULL | |||
#define NULL ((void *)0) | |||
#endif | |||
#define __always_inline inline __attribute__((always_inline)) | |||
#define __noinline __attribute__((noinline)) | |||
#define __noreturn __attribute__((noreturn)) | |||
/* Represents true-or-false values */ | |||
typedef int bool; | |||
/* Explicitly-sized versions of integer types */ | |||
typedef char int8_t; | |||
typedef unsigned char uint8_t; | |||
typedef short int16_t; | |||
typedef unsigned short uint16_t; | |||
typedef int int32_t; | |||
typedef unsigned int uint32_t; | |||
typedef long long int64_t; | |||
typedef unsigned long long uint64_t; | |||
/* * | |||
* Pointers and addresses are 32 bits long. | |||
* We use pointer types to represent addresses, | |||
* uintptr_t to represent the numerical values of addresses. | |||
* */ | |||
typedef int32_t intptr_t; | |||
typedef uint32_t uintptr_t; | |||
/* size_t is used for memory object sizes */ | |||
typedef uintptr_t size_t; | |||
/* used for page numbers */ | |||
typedef size_t ppn_t; | |||
/* * | |||
* Rounding operations (efficient when n is a power of 2) | |||
* Round down to the nearest multiple of n | |||
* */ | |||
#define ROUNDDOWN(a, n) ({ \ | |||
size_t __a = (size_t)(a); \ | |||
(typeof(a))(__a - __a % (n)); \ | |||
}) | |||
/* Round up to the nearest multiple of n */ | |||
#define ROUNDUP(a, n) ({ \ | |||
size_t __n = (size_t)(n); \ | |||
(typeof(a))(ROUNDDOWN((size_t)(a) + __n - 1, __n)); \ | |||
}) | |||
/* Return the offset of 'member' relative to the beginning of a struct type */ | |||
#define offsetof(type, member) \ | |||
((size_t)(&((type *)0)->member)) | |||
/* * | |||
* to_struct - get the struct from a ptr | |||
* @ptr: a struct pointer of member | |||
* @type: the type of the struct this is embedded in | |||
* @member: the name of the member within the struct | |||
* */ | |||
#define to_struct(ptr, type, member) \ | |||
((type *)((char *)(ptr) - offsetof(type, member))) | |||
#endif /* !__LIBS_DEFS_H__ */ | |||
@ -0,0 +1,40 @@ | |||
#ifndef __LIBS_ELF_H__ | |||
#define __LIBS_ELF_H__ | |||
#include <defs.h> | |||
#define ELF_MAGIC 0x464C457FU // "\x7FELF" in little endian | |||
/* file header */ | |||
struct elfhdr { | |||
uint32_t e_magic; // must equal ELF_MAGIC | |||
uint8_t e_elf[12]; | |||
uint16_t e_type; // 1=relocatable, 2=executable, 3=shared object, 4=core image | |||
uint16_t e_machine; // 3=x86, 4=68K, etc. | |||
uint32_t e_version; // file version, always 1 | |||
uint32_t e_entry; // entry point if executable | |||
uint32_t e_phoff; // file position of program header or 0 | |||
uint32_t e_shoff; // file position of section header or 0 | |||
uint32_t e_flags; // architecture-specific flags, usually 0 | |||
uint16_t e_ehsize; // size of this elf header | |||
uint16_t e_phentsize; // size of an entry in program header | |||
uint16_t e_phnum; // number of entries in program header or 0 | |||
uint16_t e_shentsize; // size of an entry in section header | |||
uint16_t e_shnum; // number of entries in section header or 0 | |||
uint16_t e_shstrndx; // section number that contains section name strings | |||
}; | |||
/* program section header */ | |||
struct proghdr { | |||
uint32_t p_type; // loadable code or data, dynamic linking info,etc. | |||
uint32_t p_offset; // file offset of segment | |||
uint32_t p_va; // virtual address to map segment | |||
uint32_t p_pa; // physical address, not used | |||
uint32_t p_filesz; // size of segment in file | |||
uint32_t p_memsz; // size of segment in memory (bigger if contains bss) | |||
uint32_t p_flags; // read/write/execute bits | |||
uint32_t p_align; // required alignment, invariably hardware page size | |||
}; | |||
#endif /* !__LIBS_ELF_H__ */ | |||
@ -0,0 +1,16 @@ | |||
#ifndef __LIBS_ERROR_H__ | |||
#define __LIBS_ERROR_H__ | |||
/* kernel error codes -- keep in sync with list in lib/printfmt.c */ | |||
#define E_UNSPECIFIED 1 // Unspecified or unknown problem | |||
#define E_BAD_PROC 2 // Process doesn't exist or otherwise | |||
#define E_INVAL 3 // Invalid parameter | |||
#define E_NO_MEM 4 // Request failed due to memory shortage | |||
#define E_NO_FREE_PROC 5 // Attempt to create a new process beyond | |||
#define E_FAULT 6 // Memory fault | |||
/* the maximum allowed */ | |||
#define MAXERROR 6 | |||
#endif /* !__LIBS_ERROR_H__ */ | |||
@ -0,0 +1,18 @@ | |||
#include <stdlib.h> | |||
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ | |||
#define GOLDEN_RATIO_PRIME_32 0x9e370001UL | |||
/* * | |||
* hash32 - generate a hash value in the range [0, 2^@bits - 1] | |||
* @val: the input value | |||
* @bits: the number of bits in a return value | |||
* | |||
* High bits are more random, so we use them. | |||
* */ | |||
uint32_t | |||
hash32(uint32_t val, unsigned int bits) { | |||
uint32_t hash = val * GOLDEN_RATIO_PRIME_32; | |||
return (hash >> (32 - bits)); | |||
} | |||
@ -0,0 +1,163 @@ | |||
#ifndef __LIBS_LIST_H__ | |||
#define __LIBS_LIST_H__ | |||
#ifndef __ASSEMBLER__ | |||
#include <defs.h> | |||
/* * | |||
* Simple doubly linked list implementation. | |||
* | |||
* Some of the internal functions ("__xxx") are useful when manipulating | |||
* whole lists rather than single entries, as sometimes we already know | |||
* the next/prev entries and we can generate better code by using them | |||
* directly rather than using the generic single-entry routines. | |||
* */ | |||
struct list_entry { | |||
struct list_entry *prev, *next; | |||
}; | |||
typedef struct list_entry list_entry_t; | |||
static inline void list_init(list_entry_t *elm) __attribute__((always_inline)); | |||
static inline void list_add(list_entry_t *listelm, list_entry_t *elm) __attribute__((always_inline)); | |||
static inline void list_add_before(list_entry_t *listelm, list_entry_t *elm) __attribute__((always_inline)); | |||
static inline void list_add_after(list_entry_t *listelm, list_entry_t *elm) __attribute__((always_inline)); | |||
static inline void list_del(list_entry_t *listelm) __attribute__((always_inline)); | |||
static inline void list_del_init(list_entry_t *listelm) __attribute__((always_inline)); | |||
static inline bool list_empty(list_entry_t *list) __attribute__((always_inline)); | |||
static inline list_entry_t *list_next(list_entry_t *listelm) __attribute__((always_inline)); | |||
static inline list_entry_t *list_prev(list_entry_t *listelm) __attribute__((always_inline)); | |||
static inline void __list_add(list_entry_t *elm, list_entry_t *prev, list_entry_t *next) __attribute__((always_inline)); | |||
static inline void __list_del(list_entry_t *prev, list_entry_t *next) __attribute__((always_inline)); | |||
/* * | |||
* list_init - initialize a new entry | |||
* @elm: new entry to be initialized | |||
* */ | |||
static inline void | |||
list_init(list_entry_t *elm) { | |||
elm->prev = elm->next = elm; | |||
} | |||
/* * | |||
* list_add - add a new entry | |||
* @listelm: list head to add after | |||
* @elm: new entry to be added | |||
* | |||
* Insert the new element @elm *after* the element @listelm which | |||
* is already in the list. | |||
* */ | |||
static inline void | |||
list_add(list_entry_t *listelm, list_entry_t *elm) { | |||
list_add_after(listelm, elm); | |||
} | |||
/* * | |||
* list_add_before - add a new entry | |||
* @listelm: list head to add before | |||
* @elm: new entry to be added | |||
* | |||
* Insert the new element @elm *before* the element @listelm which | |||
* is already in the list. | |||
* */ | |||
static inline void | |||
list_add_before(list_entry_t *listelm, list_entry_t *elm) { | |||
__list_add(elm, listelm->prev, listelm); | |||
} | |||
/* * | |||
* list_add_after - add a new entry | |||
* @listelm: list head to add after | |||
* @elm: new entry to be added | |||
* | |||
* Insert the new element @elm *after* the element @listelm which | |||
* is already in the list. | |||
* */ | |||
static inline void | |||
list_add_after(list_entry_t *listelm, list_entry_t *elm) { | |||
__list_add(elm, listelm, listelm->next); | |||
} | |||
/* * | |||
* list_del - deletes entry from list | |||
* @listelm: the element to delete from the list | |||
* | |||
* Note: list_empty() on @listelm does not return true after this, the entry is | |||
* in an undefined state. | |||
* */ | |||
static inline void | |||
list_del(list_entry_t *listelm) { | |||
__list_del(listelm->prev, listelm->next); | |||
} | |||
/* * | |||
* list_del_init - deletes entry from list and reinitialize it. | |||
* @listelm: the element to delete from the list. | |||
* | |||
* Note: list_empty() on @listelm returns true after this. | |||
* */ | |||
static inline void | |||
list_del_init(list_entry_t *listelm) { | |||
list_del(listelm); | |||
list_init(listelm); | |||
} | |||
/* * | |||
* list_empty - tests whether a list is empty | |||
* @list: the list to test. | |||
* */ | |||
static inline bool | |||
list_empty(list_entry_t *list) { | |||
return list->next == list; | |||
} | |||
/* * | |||
* list_next - get the next entry | |||
* @listelm: the list head | |||
**/ | |||
static inline list_entry_t * | |||
list_next(list_entry_t *listelm) { | |||
return listelm->next; | |||
} | |||
/* * | |||
* list_prev - get the previous entry | |||
* @listelm: the list head | |||
**/ | |||
static inline list_entry_t * | |||
list_prev(list_entry_t *listelm) { | |||
return listelm->prev; | |||
} | |||
/* * | |||
* Insert a new entry between two known consecutive entries. | |||
* | |||
* This is only for internal list manipulation where we know | |||
* the prev/next entries already! | |||
* */ | |||
static inline void | |||
__list_add(list_entry_t *elm, list_entry_t *prev, list_entry_t *next) { | |||
prev->next = next->prev = elm; | |||
elm->next = next; | |||
elm->prev = prev; | |||
} | |||
/* * | |||
* Delete a list entry by making the prev/next entries point to each other. | |||
* | |||
* This is only for internal list manipulation where we know | |||
* the prev/next entries already! | |||
* */ | |||
static inline void | |||
__list_del(list_entry_t *prev, list_entry_t *next) { | |||
prev->next = next; | |||
next->prev = prev; | |||
} | |||
#endif /* !__ASSEMBLER__ */ | |||
#endif /* !__LIBS_LIST_H__ */ | |||
@ -0,0 +1,340 @@ | |||
#include <defs.h> | |||
#include <x86.h> | |||
#include <error.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/* * | |||
* Space or zero padding and a field width are supported for the numeric | |||
* formats only. | |||
* | |||
* The special format %e takes an integer error code | |||
* and prints a string describing the error. | |||
* The integer may be positive or negative, | |||
* so that -E_NO_MEM and E_NO_MEM are equivalent. | |||
* */ | |||
static const char * const error_string[MAXERROR + 1] = { | |||
[0] NULL, | |||
[E_UNSPECIFIED] "unspecified error", | |||
[E_BAD_PROC] "bad process", | |||
[E_INVAL] "invalid parameter", | |||
[E_NO_MEM] "out of memory", | |||
[E_NO_FREE_PROC] "out of processes", | |||
[E_FAULT] "segmentation fault", | |||
}; | |||
/* * | |||
* printnum - print a number (base <= 16) in reverse order | |||
* @putch: specified putch function, print a single character | |||
* @putdat: used by @putch function | |||
* @num: the number will be printed | |||
* @base: base for print, must be in [1, 16] | |||
* @width: maximum number of digits, if the actual width is less than @width, use @padc instead | |||
* @padc: character that padded on the left if the actual width is less than @width | |||
* */ | |||
static void | |||
printnum(void (*putch)(int, void*), void *putdat, | |||
unsigned long long num, unsigned base, int width, int padc) { | |||
unsigned long long result = num; | |||
unsigned mod = do_div(result, base); | |||
// first recursively print all preceding (more significant) digits | |||
if (num >= base) { | |||
printnum(putch, putdat, result, base, width - 1, padc); | |||
} else { | |||
// print any needed pad characters before first digit | |||
while (-- width > 0) | |||
putch(padc, putdat); | |||
} | |||
// then print this (the least significant) digit | |||
putch("0123456789abcdef"[mod], putdat); | |||
} | |||
/* * | |||
* getuint - get an unsigned int of various possible sizes from a varargs list | |||
* @ap: a varargs list pointer | |||
* @lflag: determines the size of the vararg that @ap points to | |||
* */ | |||
static unsigned long long | |||
getuint(va_list *ap, int lflag) { | |||
if (lflag >= 2) { | |||
return va_arg(*ap, unsigned long long); | |||
} | |||
else if (lflag) { | |||
return va_arg(*ap, unsigned long); | |||
} | |||
else { | |||
return va_arg(*ap, unsigned int); | |||
} | |||
} | |||
/* * | |||
* getint - same as getuint but signed, we can't use getuint because of sign extension | |||
* @ap: a varargs list pointer | |||
* @lflag: determines the size of the vararg that @ap points to | |||
* */ | |||
static long long | |||
getint(va_list *ap, int lflag) { | |||
if (lflag >= 2) { | |||
return va_arg(*ap, long long); | |||
} | |||
else if (lflag) { | |||
return va_arg(*ap, long); | |||
} | |||
else { | |||
return va_arg(*ap, int); | |||
} | |||
} | |||
/* * | |||
* printfmt - format a string and print it by using putch | |||
* @putch: specified putch function, print a single character | |||
* @putdat: used by @putch function | |||
* @fmt: the format string to use | |||
* */ | |||
void | |||
printfmt(void (*putch)(int, void*), void *putdat, const char *fmt, ...) { | |||
va_list ap; | |||
va_start(ap, fmt); | |||
vprintfmt(putch, putdat, fmt, ap); | |||
va_end(ap); | |||
} | |||
/* * | |||
* vprintfmt - format a string and print it by using putch, it's called with a va_list | |||
* instead of a variable number of arguments | |||
* @putch: specified putch function, print a single character | |||
* @putdat: used by @putch function | |||
* @fmt: the format string to use | |||
* @ap: arguments for the format string | |||
* | |||
* Call this function if you are already dealing with a va_list. | |||
* Or you probably want printfmt() instead. | |||
* */ | |||
void | |||
vprintfmt(void (*putch)(int, void*), void *putdat, const char *fmt, va_list ap) { | |||
register const char *p; | |||
register int ch, err; | |||
unsigned long long num; | |||
int base, width, precision, lflag, altflag; | |||
while (1) { | |||
while ((ch = *(unsigned char *)fmt ++) != '%') { | |||
if (ch == '\0') { | |||
return; | |||
} | |||
putch(ch, putdat); | |||
} | |||
// Process a %-escape sequence | |||
char padc = ' '; | |||
width = precision = -1; | |||
lflag = altflag = 0; | |||
reswitch: | |||
switch (ch = *(unsigned char *)fmt ++) { | |||
// flag to pad on the right | |||
case '-': | |||
padc = '-'; | |||
goto reswitch; | |||
// flag to pad with 0's instead of spaces | |||
case '0': | |||
padc = '0'; | |||
goto reswitch; | |||
// width field | |||
case '1' ... '9': | |||
for (precision = 0; ; ++ fmt) { | |||
precision = precision * 10 + ch - '0'; | |||
ch = *fmt; | |||
if (ch < '0' || ch > '9') { | |||
break; | |||
} | |||
} | |||
goto process_precision; | |||
case '*': | |||
precision = va_arg(ap, int); | |||
goto process_precision; | |||
case '.': | |||
if (width < 0) | |||
width = 0; | |||
goto reswitch; | |||
case '#': | |||
altflag = 1; | |||
goto reswitch; | |||
process_precision: | |||
if (width < 0) | |||
width = precision, precision = -1; | |||
goto reswitch; | |||
// long flag (doubled for long long) | |||
case 'l': | |||
lflag ++; | |||
goto reswitch; | |||
// character | |||
case 'c': | |||
putch(va_arg(ap, int), putdat); | |||
break; | |||
// error message | |||
case 'e': | |||
err = va_arg(ap, int); | |||
if (err < 0) { | |||
err = -err; | |||
} | |||
if (err > MAXERROR || (p = error_string[err]) == NULL) { | |||
printfmt(putch, putdat, "error %d", err); | |||
} | |||
else { | |||
printfmt(putch, putdat, "%s", p); | |||
} | |||
break; | |||
// string | |||
case 's': | |||
if ((p = va_arg(ap, char *)) == NULL) { | |||
p = "(null)"; | |||
} | |||
if (width > 0 && padc != '-') { | |||
for (width -= strnlen(p, precision); width > 0; width --) { | |||
putch(padc, putdat); | |||
} | |||
} | |||
for (; (ch = *p ++) != '\0' && (precision < 0 || -- precision >= 0); width --) { | |||
if (altflag && (ch < ' ' || ch > '~')) { | |||
putch('?', putdat); | |||
} | |||
else { | |||
putch(ch, putdat); | |||
} | |||
} | |||
for (; width > 0; width --) { | |||
putch(' ', putdat); | |||
} | |||
break; | |||
// (signed) decimal | |||
case 'd': | |||
num = getint(&ap, lflag); | |||
if ((long long)num < 0) { | |||
putch('-', putdat); | |||
num = -(long long)num; | |||
} | |||
base = 10; | |||
goto number; | |||
// unsigned decimal | |||
case 'u': | |||
num = getuint(&ap, lflag); | |||
base = 10; | |||
goto number; | |||
// (unsigned) octal | |||
case 'o': | |||
num = getuint(&ap, lflag); | |||
base = 8; | |||
goto number; | |||
// pointer | |||
case 'p': | |||
putch('0', putdat); | |||
putch('x', putdat); | |||
num = (unsigned long long)(uintptr_t)va_arg(ap, void *); | |||
base = 16; | |||
goto number; | |||
// (unsigned) hexadecimal | |||
case 'x': | |||
num = getuint(&ap, lflag); | |||
base = 16; | |||
number: | |||
printnum(putch, putdat, num, base, width, padc); | |||
break; | |||
// escaped '%' character | |||
case '%': | |||
putch(ch, putdat); | |||
break; | |||
// unrecognized escape sequence - just print it literally | |||
default: | |||
putch('%', putdat); | |||
for (fmt --; fmt[-1] != '%'; fmt --) | |||
/* do nothing */; | |||
break; | |||
} | |||
} | |||
} | |||
/* sprintbuf is used to save enough information of a buffer */ | |||
struct sprintbuf { | |||
char *buf; // address pointer points to the first unused memory | |||
char *ebuf; // points the end of the buffer | |||
int cnt; // the number of characters that have been placed in this buffer | |||
}; | |||
/* * | |||
* sprintputch - 'print' a single character in a buffer | |||
* @ch: the character will be printed | |||
* @b: the buffer to place the character @ch | |||
* */ | |||
static void | |||
sprintputch(int ch, struct sprintbuf *b) { | |||
b->cnt ++; | |||
if (b->buf < b->ebuf) { | |||
*b->buf ++ = ch; | |||
} | |||
} | |||
/* * | |||
* snprintf - format a string and place it in a buffer | |||
* @str: the buffer to place the result into | |||
* @size: the size of buffer, including the trailing null space | |||
* @fmt: the format string to use | |||
* */ | |||
int | |||
snprintf(char *str, size_t size, const char *fmt, ...) { | |||
va_list ap; | |||
int cnt; | |||
va_start(ap, fmt); | |||
cnt = vsnprintf(str, size, fmt, ap); | |||
va_end(ap); | |||
return cnt; | |||
} | |||
/* * | |||
* vsnprintf - format a string and place it in a buffer, it's called with a va_list | |||
* instead of a variable number of arguments | |||
* @str: the buffer to place the result into | |||
* @size: the size of buffer, including the trailing null space | |||
* @fmt: the format string to use | |||
* @ap: arguments for the format string | |||
* | |||
* The return value is the number of characters which would be generated for the | |||
* given input, excluding the trailing '\0'. | |||
* | |||
* Call this function if you are already dealing with a va_list. | |||
* Or you probably want snprintf() instead. | |||
* */ | |||
int | |||
vsnprintf(char *str, size_t size, const char *fmt, va_list ap) { | |||
struct sprintbuf b = {str, str + size - 1, 0}; | |||
if (str == NULL || b.buf > b.ebuf) { | |||
return -E_INVAL; | |||
} | |||
// print the string to the buffer | |||
vprintfmt((void*)sprintputch, &b, fmt, ap); | |||
// null terminate the buffer | |||
*b.buf = '\0'; | |||
return b.cnt; | |||
} | |||
@ -0,0 +1,26 @@ | |||
#include <x86.h> | |||
#include <stdlib.h> | |||
static unsigned long long next = 1; | |||
/* * | |||
* rand - returns a pseudo-random integer | |||
* | |||
* The rand() function return a value in the range [0, RAND_MAX]. | |||
* */ | |||
int | |||
rand(void) { | |||
next = (next * 0x5DEECE66DLL + 0xBLL) & ((1LL << 48) - 1); | |||
unsigned long long result = (next >> 12); | |||
return (int)do_div(result, RAND_MAX + 1); | |||
} | |||
/* * | |||
* srand - seed the random number generator with the given number | |||
* @seed: the required seed number | |||
* */ | |||
void | |||
srand(unsigned int seed) { | |||
next = seed; | |||
} | |||
@ -0,0 +1,12 @@ | |||
#ifndef __LIBS_STDARG_H__ | |||
#define __LIBS_STDARG_H__ | |||
/* compiler provides size of save area */ | |||
typedef __builtin_va_list va_list; | |||
#define va_start(ap, last) (__builtin_va_start(ap, last)) | |||
#define va_arg(ap, type) (__builtin_va_arg(ap, type)) | |||
#define va_end(ap) /*nothing*/ | |||
#endif /* !__LIBS_STDARG_H__ */ | |||
@ -0,0 +1,24 @@ | |||
#ifndef __LIBS_STDIO_H__ | |||
#define __LIBS_STDIO_H__ | |||
#include <defs.h> | |||
#include <stdarg.h> | |||
/* kern/libs/stdio.c */ | |||
int cprintf(const char *fmt, ...); | |||
int vcprintf(const char *fmt, va_list ap); | |||
void cputchar(int c); | |||
int cputs(const char *str); | |||
int getchar(void); | |||
/* kern/libs/readline.c */ | |||
char *readline(const char *prompt); | |||
/* libs/printfmt.c */ | |||
void printfmt(void (*putch)(int, void *), void *putdat, const char *fmt, ...); | |||
void vprintfmt(void (*putch)(int, void *), void *putdat, const char *fmt, va_list ap); | |||
int snprintf(char *str, size_t size, const char *fmt, ...); | |||
int vsnprintf(char *str, size_t size, const char *fmt, va_list ap); | |||
#endif /* !__LIBS_STDIO_H__ */ | |||
@ -0,0 +1,17 @@ | |||
#ifndef __LIBS_STDLIB_H__ | |||
#define __LIBS_STDLIB_H__ | |||
#include <defs.h> | |||
/* the largest number rand will return */ | |||
#define RAND_MAX 2147483647UL | |||
/* libs/rand.c */ | |||
int rand(void); | |||
void srand(unsigned int seed); | |||
/* libs/hash.c */ | |||
uint32_t hash32(uint32_t val, unsigned int bits); | |||
#endif /* !__LIBS_RAND_H__ */ | |||
@ -0,0 +1,367 @@ | |||
#include <string.h> | |||
#include <x86.h> | |||
/* * | |||
* strlen - calculate the length of the string @s, not including | |||
* the terminating '\0' character. | |||
* @s: the input string | |||
* | |||
* The strlen() function returns the length of string @s. | |||
* */ | |||
size_t | |||
strlen(const char *s) { | |||
size_t cnt = 0; | |||
while (*s ++ != '\0') { | |||
cnt ++; | |||
} | |||
return cnt; | |||
} | |||
/* * | |||
* strnlen - calculate the length of the string @s, not including | |||
* the terminating '\0' char acter, but at most @len. | |||
* @s: the input string | |||
* @len: the max-length that function will scan | |||
* | |||
* Note that, this function looks only at the first @len characters | |||
* at @s, and never beyond @s + @len. | |||
* | |||
* The return value is strlen(s), if that is less than @len, or | |||
* @len if there is no '\0' character among the first @len characters | |||
* pointed by @s. | |||
* */ | |||
size_t | |||
strnlen(const char *s, size_t len) { | |||
size_t cnt = 0; | |||
while (cnt < len && *s ++ != '\0') { | |||
cnt ++; | |||
} | |||
return cnt; | |||
} | |||
/* * | |||
* strcpy - copies the string pointed by @src into the array pointed by @dst, | |||
* including the terminating null character. | |||
* @dst: pointer to the destination array where the content is to be copied | |||
* @src: string to be copied | |||
* | |||
* The return value is @dst. | |||
* | |||
* To avoid overflows, the size of array pointed by @dst should be long enough to | |||
* contain the same string as @src (including the terminating null character), and | |||
* should not overlap in memory with @src. | |||
* */ | |||
char * | |||
strcpy(char *dst, const char *src) { | |||
#ifdef __HAVE_ARCH_STRCPY | |||
return __strcpy(dst, src); | |||
#else | |||
char *p = dst; | |||
while ((*p ++ = *src ++) != '\0') | |||
/* nothing */; | |||
return dst; | |||
#endif /* __HAVE_ARCH_STRCPY */ | |||
} | |||
/* * | |||
* strncpy - copies the first @len characters of @src to @dst. If the end of string @src | |||
* if found before @len characters have been copied, @dst is padded with '\0' until a | |||
* total of @len characters have been written to it. | |||
* @dst: pointer to the destination array where the content is to be copied | |||
* @src: string to be copied | |||
* @len: maximum number of characters to be copied from @src | |||
* | |||
* The return value is @dst | |||
* */ | |||
char * | |||
strncpy(char *dst, const char *src, size_t len) { | |||
char *p = dst; | |||
while (len > 0) { | |||
if ((*p = *src) != '\0') { | |||
src ++; | |||
} | |||
p ++, len --; | |||
} | |||
return dst; | |||
} | |||
/* * | |||
* strcmp - compares the string @s1 and @s2 | |||
* @s1: string to be compared | |||
* @s2: string to be compared | |||
* | |||
* This function starts comparing the first character of each string. If | |||
* they are equal to each other, it continues with the following pairs until | |||
* the characters differ or until a terminanting null-character is reached. | |||
* | |||
* Returns an integral value indicating the relationship between the strings: | |||
* - A zero value indicates that both strings are equal; | |||
* - A value greater than zero indicates that the first character that does | |||
* not match has a greater value in @s1 than in @s2; | |||
* - And a value less than zero indicates the opposite. | |||
* */ | |||
int | |||
strcmp(const char *s1, const char *s2) { | |||
#ifdef __HAVE_ARCH_STRCMP | |||
return __strcmp(s1, s2); | |||
#else | |||
while (*s1 != '\0' && *s1 == *s2) { | |||
s1 ++, s2 ++; | |||
} | |||
return (int)((unsigned char)*s1 - (unsigned char)*s2); | |||
#endif /* __HAVE_ARCH_STRCMP */ | |||
} | |||
/* * | |||
* strncmp - compares up to @n characters of the string @s1 to those of the string @s2 | |||
* @s1: string to be compared | |||
* @s2: string to be compared | |||
* @n: maximum number of characters to compare | |||
* | |||
* This function starts comparing the first character of each string. If | |||
* they are equal to each other, it continues with the following pairs until | |||
* the characters differ, until a terminating null-character is reached, or | |||
* until @n characters match in both strings, whichever happens first. | |||
* */ | |||
int | |||
strncmp(const char *s1, const char *s2, size_t n) { | |||
while (n > 0 && *s1 != '\0' && *s1 == *s2) { | |||
n --, s1 ++, s2 ++; | |||
} | |||
return (n == 0) ? 0 : (int)((unsigned char)*s1 - (unsigned char)*s2); | |||
} | |||
/* * | |||
* strchr - locates first occurrence of character in string | |||
* @s: the input string | |||
* @c: character to be located | |||
* | |||
* The strchr() function returns a pointer to the first occurrence of | |||
* character in @s. If the value is not found, the function returns 'NULL'. | |||
* */ | |||
char * | |||
strchr(const char *s, char c) { | |||
while (*s != '\0') { | |||
if (*s == c) { | |||
return (char *)s; | |||
} | |||
s ++; | |||
} | |||
return NULL; | |||
} | |||
/* * | |||
* strfind - locates first occurrence of character in string | |||
* @s: the input string | |||
* @c: character to be located | |||
* | |||
* The strfind() function is like strchr() except that if @c is | |||
* not found in @s, then it returns a pointer to the null byte at the | |||
* end of @s, rather than 'NULL'. | |||
* */ | |||
char * | |||
strfind(const char *s, char c) { | |||
while (*s != '\0') { | |||
if (*s == c) { | |||
break; | |||
} | |||
s ++; | |||
} | |||
return (char *)s; | |||
} | |||
/* * | |||
* strtol - converts string to long integer | |||
* @s: the input string that contains the representation of an integer number | |||
* @endptr: reference to an object of type char *, whose value is set by the | |||
* function to the next character in @s after the numerical value. This | |||
* parameter can also be a null pointer, in which case it is not used. | |||
* @base: x | |||
* | |||
* The function first discards as many whitespace characters as necessary until | |||
* the first non-whitespace character is found. Then, starting from this character, | |||
* takes as many characters as possible that are valid following a syntax that | |||
* depends on the base parameter, and interprets them as a numerical value. Finally, | |||
* a pointer to the first character following the integer representation in @s | |||
* is stored in the object pointed by @endptr. | |||
* | |||
* If the value of base is zero, the syntax expected is similar to that of | |||
* integer constants, which is formed by a succession of: | |||
* - An optional plus or minus sign; | |||
* - An optional prefix indicating octal or hexadecimal base ("0" or "0x" respectively) | |||
* - A sequence of decimal digits (if no base prefix was specified) or either octal | |||
* or hexadecimal digits if a specific prefix is present | |||
* | |||
* If the base value is between 2 and 36, the format expected for the integral number | |||
* is a succession of the valid digits and/or letters needed to represent integers of | |||
* the specified radix (starting from '0' and up to 'z'/'Z' for radix 36). The | |||
* sequence may optionally be preceded by a plus or minus sign and, if base is 16, | |||
* an optional "0x" or "0X" prefix. | |||
* | |||
* The strtol() function returns the converted integral number as a long int value. | |||
* */ | |||
long | |||
strtol(const char *s, char **endptr, int base) { | |||
int neg = 0; | |||
long val = 0; | |||
// gobble initial whitespace | |||
while (*s == ' ' || *s == '\t') { | |||
s ++; | |||
} | |||
// plus/minus sign | |||
if (*s == '+') { | |||
s ++; | |||
} | |||
else if (*s == '-') { | |||
s ++, neg = 1; | |||
} | |||
// hex or octal base prefix | |||
if ((base == 0 || base == 16) && (s[0] == '0' && s[1] == 'x')) { | |||
s += 2, base = 16; | |||
} | |||
else if (base == 0 && s[0] == '0') { | |||
s ++, base = 8; | |||
} | |||
else if (base == 0) { | |||
base = 10; | |||
} | |||
// digits | |||
while (1) { | |||
int dig; | |||
if (*s >= '0' && *s <= '9') { | |||
dig = *s - '0'; | |||
} | |||
else if (*s >= 'a' && *s <= 'z') { | |||
dig = *s - 'a' + 10; | |||
} | |||
else if (*s >= 'A' && *s <= 'Z') { | |||
dig = *s - 'A' + 10; | |||
} | |||
else { | |||
break; | |||
} | |||
if (dig >= base) { | |||
break; | |||
} | |||
s ++, val = (val * base) + dig; | |||
// we don't properly detect overflow! | |||
} | |||
if (endptr) { | |||
*endptr = (char *) s; | |||
} | |||
return (neg ? -val : val); | |||
} | |||
/* * | |||
* memset - sets the first @n bytes of the memory area pointed by @s | |||
* to the specified value @c. | |||
* @s: pointer the the memory area to fill | |||
* @c: value to set | |||
* @n: number of bytes to be set to the value | |||
* | |||
* The memset() function returns @s. | |||
* */ | |||
void * | |||
memset(void *s, char c, size_t n) { | |||
#ifdef __HAVE_ARCH_MEMSET | |||
return __memset(s, c, n); | |||
#else | |||
char *p = s; | |||
while (n -- > 0) { | |||
*p ++ = c; | |||
} | |||
return s; | |||
#endif /* __HAVE_ARCH_MEMSET */ | |||
} | |||
/* * | |||
* memmove - copies the values of @n bytes from the location pointed by @src to | |||
* the memory area pointed by @dst. @src and @dst are allowed to overlap. | |||
* @dst pointer to the destination array where the content is to be copied | |||
* @src pointer to the source of data to by copied | |||
* @n: number of bytes to copy | |||
* | |||
* The memmove() function returns @dst. | |||
* */ | |||
void * | |||
memmove(void *dst, const void *src, size_t n) { | |||
#ifdef __HAVE_ARCH_MEMMOVE | |||
return __memmove(dst, src, n); | |||
#else | |||
const char *s = src; | |||
char *d = dst; | |||
if (s < d && s + n > d) { | |||
s += n, d += n; | |||
while (n -- > 0) { | |||
*-- d = *-- s; | |||
} | |||
} else { | |||
while (n -- > 0) { | |||
*d ++ = *s ++; | |||
} | |||
} | |||
return dst; | |||
#endif /* __HAVE_ARCH_MEMMOVE */ | |||
} | |||
/* * | |||
* memcpy - copies the value of @n bytes from the location pointed by @src to | |||
* the memory area pointed by @dst. | |||
* @dst pointer to the destination array where the content is to be copied | |||
* @src pointer to the source of data to by copied | |||
* @n: number of bytes to copy | |||
* | |||
* The memcpy() returns @dst. | |||
* | |||
* Note that, the function does not check any terminating null character in @src, | |||
* it always copies exactly @n bytes. To avoid overflows, the size of arrays pointed | |||
* by both @src and @dst, should be at least @n bytes, and should not overlap | |||
* (for overlapping memory area, memmove is a safer approach). | |||
* */ | |||
void * | |||
memcpy(void *dst, const void *src, size_t n) { | |||
#ifdef __HAVE_ARCH_MEMCPY | |||
return __memcpy(dst, src, n); | |||
#else | |||
const char *s = src; | |||
char *d = dst; | |||
while (n -- > 0) { | |||
*d ++ = *s ++; | |||
} | |||
return dst; | |||
#endif /* __HAVE_ARCH_MEMCPY */ | |||
} | |||
/* * | |||
* memcmp - compares two blocks of memory | |||
* @v1: pointer to block of memory | |||
* @v2: pointer to block of memory | |||
* @n: number of bytes to compare | |||
* | |||
* The memcmp() functions returns an integral value indicating the | |||
* relationship between the content of the memory blocks: | |||
* - A zero value indicates that the contents of both memory blocks are equal; | |||
* - A value greater than zero indicates that the first byte that does not | |||
* match in both memory blocks has a greater value in @v1 than in @v2 | |||
* as if evaluated as unsigned char values; | |||
* - And a value less than zero indicates the opposite. | |||
* */ | |||
int | |||
memcmp(const void *v1, const void *v2, size_t n) { | |||
const char *s1 = (const char *)v1; | |||
const char *s2 = (const char *)v2; | |||
while (n -- > 0) { | |||
if (*s1 != *s2) { | |||
return (int)((unsigned char)*s1 - (unsigned char)*s2); | |||
} | |||
s1 ++, s2 ++; | |||
} | |||
return 0; | |||
} | |||
@ -0,0 +1,25 @@ | |||
#ifndef __LIBS_STRING_H__ | |||
#define __LIBS_STRING_H__ | |||
#include <defs.h> | |||
size_t strlen(const char *s); | |||
size_t strnlen(const char *s, size_t len); | |||
char *strcpy(char *dst, const char *src); | |||
char *strncpy(char *dst, const char *src, size_t len); | |||
int strcmp(const char *s1, const char *s2); | |||
int strncmp(const char *s1, const char *s2, size_t n); | |||
char *strchr(const char *s, char c); | |||
char *strfind(const char *s, char c); | |||
long strtol(const char *s, char **endptr, int base); | |||
void *memset(void *s, char c, size_t n); | |||
void *memmove(void *dst, const void *src, size_t n); | |||
void *memcpy(void *dst, const void *src, size_t n); | |||
int memcmp(const void *v1, const void *v2, size_t n); | |||
#endif /* !__LIBS_STRING_H__ */ | |||
@ -0,0 +1,302 @@ | |||
#ifndef __LIBS_X86_H__ | |||
#define __LIBS_X86_H__ | |||
#include <defs.h> | |||
#define do_div(n, base) ({ \ | |||
unsigned long __upper, __low, __high, __mod, __base; \ | |||
__base = (base); \ | |||
asm ("" : "=a" (__low), "=d" (__high) : "A" (n)); \ | |||
__upper = __high; \ | |||
if (__high != 0) { \ | |||
__upper = __high % __base; \ | |||
__high = __high / __base; \ | |||
} \ | |||
asm ("divl %2" : "=a" (__low), "=d" (__mod) \ | |||
: "rm" (__base), "0" (__low), "1" (__upper)); \ | |||
asm ("" : "=A" (n) : "a" (__low), "d" (__high)); \ | |||
__mod; \ | |||
}) | |||
#define barrier() __asm__ __volatile__ ("" ::: "memory") | |||
static inline uint8_t inb(uint16_t port) __attribute__((always_inline)); | |||
static inline void insl(uint32_t port, void *addr, int cnt) __attribute__((always_inline)); | |||
static inline void outb(uint16_t port, uint8_t data) __attribute__((always_inline)); | |||
static inline void outw(uint16_t port, uint16_t data) __attribute__((always_inline)); | |||
static inline void outsl(uint32_t port, const void *addr, int cnt) __attribute__((always_inline)); | |||
static inline uint32_t read_ebp(void) __attribute__((always_inline)); | |||
static inline void breakpoint(void) __attribute__((always_inline)); | |||
static inline uint32_t read_dr(unsigned regnum) __attribute__((always_inline)); | |||
static inline void write_dr(unsigned regnum, uint32_t value) __attribute__((always_inline)); | |||
/* Pseudo-descriptors used for LGDT, LLDT(not used) and LIDT instructions. */ | |||
struct pseudodesc { | |||
uint16_t pd_lim; // Limit | |||
uintptr_t pd_base; // Base address | |||
} __attribute__ ((packed)); | |||
static inline void lidt(struct pseudodesc *pd) __attribute__((always_inline)); | |||
static inline void sti(void) __attribute__((always_inline)); | |||
static inline void cli(void) __attribute__((always_inline)); | |||
static inline void ltr(uint16_t sel) __attribute__((always_inline)); | |||
static inline uint32_t read_eflags(void) __attribute__((always_inline)); | |||
static inline void write_eflags(uint32_t eflags) __attribute__((always_inline)); | |||
static inline void lcr0(uintptr_t cr0) __attribute__((always_inline)); | |||
static inline void lcr3(uintptr_t cr3) __attribute__((always_inline)); | |||
static inline uintptr_t rcr0(void) __attribute__((always_inline)); | |||
static inline uintptr_t rcr1(void) __attribute__((always_inline)); | |||
static inline uintptr_t rcr2(void) __attribute__((always_inline)); | |||
static inline uintptr_t rcr3(void) __attribute__((always_inline)); | |||
static inline void invlpg(void *addr) __attribute__((always_inline)); | |||
static inline uint8_t | |||
inb(uint16_t port) { | |||
uint8_t data; | |||
asm volatile ("inb %1, %0" : "=a" (data) : "d" (port) : "memory"); | |||
return data; | |||
} | |||
static inline void | |||
insl(uint32_t port, void *addr, int cnt) { | |||
asm volatile ( | |||
"cld;" | |||
"repne; insl;" | |||
: "=D" (addr), "=c" (cnt) | |||
: "d" (port), "0" (addr), "1" (cnt) | |||
: "memory", "cc"); | |||
} | |||
static inline void | |||
outb(uint16_t port, uint8_t data) { | |||
asm volatile ("outb %0, %1" :: "a" (data), "d" (port) : "memory"); | |||
} | |||
static inline void | |||
outw(uint16_t port, uint16_t data) { | |||
asm volatile ("outw %0, %1" :: "a" (data), "d" (port) : "memory"); | |||
} | |||
static inline void | |||
outsl(uint32_t port, const void *addr, int cnt) { | |||
asm volatile ( | |||
"cld;" | |||
"repne; outsl;" | |||
: "=S" (addr), "=c" (cnt) | |||
: "d" (port), "0" (addr), "1" (cnt) | |||
: "memory", "cc"); | |||
} | |||
static inline uint32_t | |||
read_ebp(void) { | |||
uint32_t ebp; | |||
asm volatile ("movl %%ebp, %0" : "=r" (ebp)); | |||
return ebp; | |||
} | |||
static inline void | |||
breakpoint(void) { | |||
asm volatile ("int $3"); | |||
} | |||
static inline uint32_t | |||
read_dr(unsigned regnum) { | |||
uint32_t value = 0; | |||
switch (regnum) { | |||
case 0: asm volatile ("movl %%db0, %0" : "=r" (value)); break; | |||
case 1: asm volatile ("movl %%db1, %0" : "=r" (value)); break; | |||
case 2: asm volatile ("movl %%db2, %0" : "=r" (value)); break; | |||
case 3: asm volatile ("movl %%db3, %0" : "=r" (value)); break; | |||
case 6: asm volatile ("movl %%db6, %0" : "=r" (value)); break; | |||
case 7: asm volatile ("movl %%db7, %0" : "=r" (value)); break; | |||
} | |||
return value; | |||
} | |||
static void | |||
write_dr(unsigned regnum, uint32_t value) { | |||
switch (regnum) { | |||
case 0: asm volatile ("movl %0, %%db0" :: "r" (value)); break; | |||
case 1: asm volatile ("movl %0, %%db1" :: "r" (value)); break; | |||
case 2: asm volatile ("movl %0, %%db2" :: "r" (value)); break; | |||
case 3: asm volatile ("movl %0, %%db3" :: "r" (value)); break; | |||
case 6: asm volatile ("movl %0, %%db6" :: "r" (value)); break; | |||
case 7: asm volatile ("movl %0, %%db7" :: "r" (value)); break; | |||
} | |||
} | |||
static inline void | |||
lidt(struct pseudodesc *pd) { | |||
asm volatile ("lidt (%0)" :: "r" (pd) : "memory"); | |||
} | |||
static inline void | |||
sti(void) { | |||
asm volatile ("sti"); | |||
} | |||
static inline void | |||
cli(void) { | |||
asm volatile ("cli" ::: "memory"); | |||
} | |||
static inline void | |||
ltr(uint16_t sel) { | |||
asm volatile ("ltr %0" :: "r" (sel) : "memory"); | |||
} | |||
static inline uint32_t | |||
read_eflags(void) { | |||
uint32_t eflags; | |||
asm volatile ("pushfl; popl %0" : "=r" (eflags)); | |||
return eflags; | |||
} | |||
static inline void | |||
write_eflags(uint32_t eflags) { | |||
asm volatile ("pushl %0; popfl" :: "r" (eflags)); | |||
} | |||
static inline void | |||
lcr0(uintptr_t cr0) { | |||
asm volatile ("mov %0, %%cr0" :: "r" (cr0) : "memory"); | |||
} | |||
static inline void | |||
lcr3(uintptr_t cr3) { | |||
asm volatile ("mov %0, %%cr3" :: "r" (cr3) : "memory"); | |||
} | |||
static inline uintptr_t | |||
rcr0(void) { | |||
uintptr_t cr0; | |||
asm volatile ("mov %%cr0, %0" : "=r" (cr0) :: "memory"); | |||
return cr0; | |||
} | |||
static inline uintptr_t | |||
rcr1(void) { | |||
uintptr_t cr1; | |||
asm volatile ("mov %%cr1, %0" : "=r" (cr1) :: "memory"); | |||
return cr1; | |||
} | |||
static inline uintptr_t | |||
rcr2(void) { | |||
uintptr_t cr2; | |||
asm volatile ("mov %%cr2, %0" : "=r" (cr2) :: "memory"); | |||
return cr2; | |||
} | |||
static inline uintptr_t | |||
rcr3(void) { | |||
uintptr_t cr3; | |||
asm volatile ("mov %%cr3, %0" : "=r" (cr3) :: "memory"); | |||
return cr3; | |||
} | |||
static inline void | |||
invlpg(void *addr) { | |||
asm volatile ("invlpg (%0)" :: "r" (addr) : "memory"); | |||
} | |||
static inline int __strcmp(const char *s1, const char *s2) __attribute__((always_inline)); | |||
static inline char *__strcpy(char *dst, const char *src) __attribute__((always_inline)); | |||
static inline void *__memset(void *s, char c, size_t n) __attribute__((always_inline)); | |||
static inline void *__memmove(void *dst, const void *src, size_t n) __attribute__((always_inline)); | |||
static inline void *__memcpy(void *dst, const void *src, size_t n) __attribute__((always_inline)); | |||
#ifndef __HAVE_ARCH_STRCMP | |||
#define __HAVE_ARCH_STRCMP | |||
static inline int | |||
__strcmp(const char *s1, const char *s2) { | |||
int d0, d1, ret; | |||
asm volatile ( | |||
"1: lodsb;" | |||
"scasb;" | |||
"jne 2f;" | |||
"testb %%al, %%al;" | |||
"jne 1b;" | |||
"xorl %%eax, %%eax;" | |||
"jmp 3f;" | |||
"2: sbbl %%eax, %%eax;" | |||
"orb $1, %%al;" | |||
"3:" | |||
: "=a" (ret), "=&S" (d0), "=&D" (d1) | |||
: "1" (s1), "2" (s2) | |||
: "memory"); | |||
return ret; | |||
} | |||
#endif /* __HAVE_ARCH_STRCMP */ | |||
#ifndef __HAVE_ARCH_STRCPY | |||
#define __HAVE_ARCH_STRCPY | |||
static inline char * | |||
__strcpy(char *dst, const char *src) { | |||
int d0, d1, d2; | |||
asm volatile ( | |||
"1: lodsb;" | |||
"stosb;" | |||
"testb %%al, %%al;" | |||
"jne 1b;" | |||
: "=&S" (d0), "=&D" (d1), "=&a" (d2) | |||
: "0" (src), "1" (dst) : "memory"); | |||
return dst; | |||
} | |||
#endif /* __HAVE_ARCH_STRCPY */ | |||
#ifndef __HAVE_ARCH_MEMSET | |||
#define __HAVE_ARCH_MEMSET | |||
static inline void * | |||
__memset(void *s, char c, size_t n) { | |||
int d0, d1; | |||
asm volatile ( | |||
"rep; stosb;" | |||
: "=&c" (d0), "=&D" (d1) | |||
: "0" (n), "a" (c), "1" (s) | |||
: "memory"); | |||
return s; | |||
} | |||
#endif /* __HAVE_ARCH_MEMSET */ | |||
#ifndef __HAVE_ARCH_MEMMOVE | |||
#define __HAVE_ARCH_MEMMOVE | |||
static inline void * | |||
__memmove(void *dst, const void *src, size_t n) { | |||
if (dst < src) { | |||
return __memcpy(dst, src, n); | |||
} | |||
int d0, d1, d2; | |||
asm volatile ( | |||
"std;" | |||
"rep; movsb;" | |||
"cld;" | |||
: "=&c" (d0), "=&S" (d1), "=&D" (d2) | |||
: "0" (n), "1" (n - 1 + src), "2" (n - 1 + dst) | |||
: "memory"); | |||
return dst; | |||
} | |||
#endif /* __HAVE_ARCH_MEMMOVE */ | |||
#ifndef __HAVE_ARCH_MEMCPY | |||
#define __HAVE_ARCH_MEMCPY | |||
static inline void * | |||
__memcpy(void *dst, const void *src, size_t n) { | |||
int d0, d1, d2; | |||
asm volatile ( | |||
"rep; movsl;" | |||
"movl %4, %%ecx;" | |||
"andl $3, %%ecx;" | |||
"jz 1f;" | |||
"rep; movsb;" | |||
"1:" | |||
: "=&c" (d0), "=&D" (d1), "=&S" (d2) | |||
: "0" (n / 4), "g" (n), "1" (dst), "2" (src) | |||
: "memory"); | |||
return dst; | |||
} | |||
#endif /* __HAVE_ARCH_MEMCPY */ | |||
#endif /* !__LIBS_X86_H__ */ | |||
@ -0,0 +1,15 @@ | |||
OUTPUT_FORMAT("elf32-i386") | |||
OUTPUT_ARCH(i386) | |||
SECTIONS { | |||
. = 0x7C00; | |||
.startup : { | |||
*bootasm.o(.text) | |||
} | |||
.text : { *(.text) } | |||
.data : { *(.data .rodata) } | |||
/DISCARD/ : { *(.eh_*) } | |||
} |
@ -0,0 +1,95 @@ | |||
OBJPREFIX := __objs_ | |||
.SECONDEXPANSION: | |||
# -------------------- function begin -------------------- | |||
# list all files in some directories: (#directories, #types) | |||
listf = $(filter $(if $(2),$(addprefix %.,$(2)),%),\ | |||
$(wildcard $(addsuffix $(SLASH)*,$(1)))) | |||
# get .o obj files: (#files[, packet]) | |||
toobj = $(addprefix $(OBJDIR)$(SLASH)$(if $(2),$(2)$(SLASH)),\ | |||
$(addsuffix .o,$(basename $(1)))) | |||
# get .d dependency files: (#files[, packet]) | |||
todep = $(patsubst %.o,%.d,$(call toobj,$(1),$(2))) | |||
totarget = $(addprefix $(BINDIR)$(SLASH),$(1)) | |||
# change $(name) to $(OBJPREFIX)$(name): (#names) | |||
packetname = $(if $(1),$(addprefix $(OBJPREFIX),$(1)),$(OBJPREFIX)) | |||
# cc compile template, generate rule for dep, obj: (file, cc[, flags, dir]) | |||
define cc_template | |||
$$(call todep,$(1),$(4)): $(1) | $$$$(dir $$$$@) | |||
@$(2) -I$$(dir $(1)) $(3) -MM $$< -MT "$$(patsubst %.d,%.o,$$@) $$@"> $$@ | |||
$$(call toobj,$(1),$(4)): $(1) | $$$$(dir $$$$@) | |||
@echo + cc $$< | |||
$(V)$(2) -I$$(dir $(1)) $(3) -c $$< -o $$@ | |||
ALLOBJS += $$(call toobj,$(1),$(4)) | |||
endef | |||
# compile file: (#files, cc[, flags, dir]) | |||
define do_cc_compile | |||
$$(foreach f,$(1),$$(eval $$(call cc_template,$$(f),$(2),$(3),$(4)))) | |||
endef | |||
# add files to packet: (#files, cc[, flags, packet, dir]) | |||
define do_add_files_to_packet | |||
__temp_packet__ := $(call packetname,$(4)) | |||
ifeq ($$(origin $$(__temp_packet__)),undefined) | |||
$$(__temp_packet__) := | |||
endif | |||
__temp_objs__ := $(call toobj,$(1),$(5)) | |||
$$(foreach f,$(1),$$(eval $$(call cc_template,$$(f),$(2),$(3),$(5)))) | |||
$$(__temp_packet__) += $$(__temp_objs__) | |||
endef | |||
# add objs to packet: (#objs, packet) | |||
define do_add_objs_to_packet | |||
__temp_packet__ := $(call packetname,$(2)) | |||
ifeq ($$(origin $$(__temp_packet__)),undefined) | |||
$$(__temp_packet__) := | |||
endif | |||
$$(__temp_packet__) += $(1) | |||
endef | |||
# add packets and objs to target (target, #packes, #objs[, cc, flags]) | |||
define do_create_target | |||
__temp_target__ = $(call totarget,$(1)) | |||
__temp_objs__ = $$(foreach p,$(call packetname,$(2)),$$($$(p))) $(3) | |||
TARGETS += $$(__temp_target__) | |||
ifneq ($(4),) | |||
$$(__temp_target__): $$(__temp_objs__) | $$$$(dir $$$$@) | |||
$(V)$(4) $(5) $$^ -o $$@ | |||
else | |||
$$(__temp_target__): $$(__temp_objs__) | $$$$(dir $$$$@) | |||
endif | |||
endef | |||
# finish all | |||
define do_finish_all | |||
ALLDEPS = $$(ALLOBJS:.o=.d) | |||
$$(sort $$(dir $$(ALLOBJS)) $(BINDIR)$(SLASH) $(OBJDIR)$(SLASH)): | |||
@$(MKDIR) $$@ | |||
endef | |||
# -------------------- function end -------------------- | |||
# compile file: (#files, cc[, flags, dir]) | |||
cc_compile = $(eval $(call do_cc_compile,$(1),$(2),$(3),$(4))) | |||
# add files to packet: (#files, cc[, flags, packet, dir]) | |||
add_files = $(eval $(call do_add_files_to_packet,$(1),$(2),$(3),$(4),$(5))) | |||
# add objs to packet: (#objs, packet) | |||
add_objs = $(eval $(call do_add_objs_to_packet,$(1),$(2))) | |||
# add packets and objs to target (target, #packes, #objs, cc, [, flags]) | |||
create_target = $(eval $(call do_create_target,$(1),$(2),$(3),$(4),$(5))) | |||
read_packet = $(foreach p,$(call packetname,$(1)),$($(p))) | |||
add_dependency = $(eval $(1): $(2)) | |||
finish_all = $(eval $(call do_finish_all)) | |||
@ -0,0 +1,3 @@ | |||
file bin/kernel | |||
target remote :1234 | |||
break kern_init |
@ -0,0 +1,373 @@ | |||
#!/bin/sh | |||
verbose=false | |||
if [ "x$1" = "x-v" ]; then | |||
verbose=true | |||
out=/dev/stdout | |||
err=/dev/stderr | |||
else | |||
out=/dev/null | |||
err=/dev/null | |||
fi | |||
## make & makeopts | |||
if gmake --version > /dev/null 2>&1; then | |||
make=gmake; | |||
else | |||
make=make; | |||
fi | |||
makeopts="--quiet --no-print-directory -j" | |||
make_print() { | |||
echo `$make $makeopts print-$1` | |||
} | |||
## command tools | |||
awk='awk' | |||
bc='bc' | |||
date='date' | |||
grep='grep' | |||
rm='rm -f' | |||
sed='sed' | |||
## symbol table | |||
sym_table='obj/kernel.sym' | |||
## gdb & gdbopts | |||
gdb="$(make_print GDB)" | |||
gdbport='1234' | |||
gdb_in="$(make_print GRADE_GDB_IN)" | |||
## qemu & qemuopts | |||
qemu="$(make_print qemu)" | |||
qemu_out="$(make_print GRADE_QEMU_OUT)" | |||
if $qemu -nographic -help | grep -q '^-gdb'; then | |||
qemugdb="-gdb tcp::$gdbport" | |||
else | |||
qemugdb="-s -p $gdbport" | |||
fi | |||
## default variables | |||
default_timeout=30 | |||
default_pts=5 | |||
pts=5 | |||
part=0 | |||
part_pos=0 | |||
total=0 | |||
total_pos=0 | |||
## default functions | |||
update_score() { | |||
total=`expr $total + $part` | |||
total_pos=`expr $total_pos + $part_pos` | |||
part=0 | |||
part_pos=0 | |||
} | |||
get_time() { | |||
echo `$date +%s.%N 2> /dev/null` | |||
} | |||
show_part() { | |||
echo "Part $1 Score: $part/$part_pos" | |||
echo | |||
update_score | |||
} | |||
show_final() { | |||
update_score | |||
echo "Total Score: $total/$total_pos" | |||
if [ $total -lt $total_pos ]; then | |||
exit 1 | |||
fi | |||
} | |||
show_time() { | |||
t1=$(get_time) | |||
time=`echo "scale=1; ($t1-$t0)/1" | $sed 's/.N/.0/g' | $bc 2> /dev/null` | |||
echo "(${time}s)" | |||
} | |||
show_build_tag() { | |||
echo "$1:" | $awk '{printf "%-24s ", $0}' | |||
} | |||
show_check_tag() { | |||
echo "$1:" | $awk '{printf " -%-40s ", $0}' | |||
} | |||
show_msg() { | |||
echo $1 | |||
shift | |||
if [ $# -gt 0 ]; then | |||
echo -e "$@" | awk '{printf " %s\n", $0}' | |||
echo | |||
fi | |||
} | |||
pass() { | |||
show_msg OK "$@" | |||
part=`expr $part + $pts` | |||
part_pos=`expr $part_pos + $pts` | |||
} | |||
fail() { | |||
show_msg WRONG "$@" | |||
part_pos=`expr $part_pos + $pts` | |||
} | |||
run_qemu() { | |||
# Run qemu with serial output redirected to $qemu_out. If $brkfun is non-empty, | |||
# wait until $brkfun is reached or $timeout expires, then kill QEMU | |||
qemuextra= | |||
if [ "$brkfun" ]; then | |||
qemuextra="-S $qemugdb" | |||
fi | |||
if [ -z "$timeout" ] || [ $timeout -le 0 ]; then | |||
timeout=$default_timeout; | |||
fi | |||
t0=$(get_time) | |||
( | |||
ulimit -t $timeout | |||
exec $qemu -nographic $qemuopts -serial file:$qemu_out -monitor null -no-reboot $qemuextra | |||
) > $out 2> $err & | |||
pid=$! | |||
# wait for QEMU to start | |||
sleep 1 | |||
if [ -n "$brkfun" ]; then | |||
# find the address of the kernel $brkfun function | |||
brkaddr=`$grep " $brkfun\$" $sym_table | $sed -e's/ .*$//g'` | |||
brkaddr_phys=`echo $brkaddr | sed "s/^c0/00/g"` | |||
( | |||
echo "target remote localhost:$gdbport" | |||
echo "break *0x$brkaddr" | |||
if [ "$brkaddr" != "$brkaddr_phys" ]; then | |||
echo "break *0x$brkaddr_phys" | |||
fi | |||
echo "continue" | |||
) > $gdb_in | |||
$gdb -batch -nx -x $gdb_in > /dev/null 2>&1 | |||
# make sure that QEMU is dead | |||
# on OS X, exiting gdb doesn't always exit qemu | |||
kill $pid > /dev/null 2>&1 | |||
fi | |||
} | |||
build_run() { | |||
# usage: build_run <tag> <args> | |||
show_build_tag "$1" | |||
shift | |||
if $verbose; then | |||
echo "$make $@ ..." | |||
fi | |||
$make $makeopts $@ 'DEFS+=-DDEBUG_GRADE' > $out 2> $err | |||
if [ $? -ne 0 ]; then | |||
echo $make $@ failed | |||
exit 1 | |||
fi | |||
# now run qemu and save the output | |||
run_qemu | |||
show_time | |||
cp $qemu_out .`echo $tag | tr '[:upper:]' '[:lower:]' | sed 's/ /_/g'`.log | |||
} | |||
check_result() { | |||
# usage: check_result <tag> <check> <check args...> | |||
show_check_tag "$1" | |||
shift | |||
# give qemu some time to run (for asynchronous mode) | |||
if [ ! -s $qemu_out ]; then | |||
sleep 4 | |||
fi | |||
if [ ! -s $qemu_out ]; then | |||
fail > /dev/null | |||
echo 'no $qemu_out' | |||
else | |||
check=$1 | |||
shift | |||
$check "$@" | |||
fi | |||
} | |||
check_regexps() { | |||
okay=yes | |||
not=0 | |||
reg=0 | |||
error= | |||
for i do | |||
if [ "x$i" = "x!" ]; then | |||
not=1 | |||
elif [ "x$i" = "x-" ]; then | |||
reg=1 | |||
else | |||
if [ $reg -ne 0 ]; then | |||
$grep '-E' "^$i\$" $qemu_out > /dev/null | |||
else | |||
$grep '-F' "$i" $qemu_out > /dev/null | |||
fi | |||
found=$(($? == 0)) | |||
if [ $found -eq $not ]; then | |||
if [ $found -eq 0 ]; then | |||
msg="!! error: missing '$i'" | |||
else | |||
msg="!! error: got unexpected line '$i'" | |||
fi | |||
okay=no | |||
if [ -z "$error" ]; then | |||
error="$msg" | |||
else | |||
error="$error\n$msg" | |||
fi | |||
fi | |||
not=0 | |||
reg=0 | |||
fi | |||
done | |||
if [ "$okay" = "yes" ]; then | |||
pass | |||
else | |||
fail "$error" | |||
if $verbose; then | |||
exit 1 | |||
fi | |||
fi | |||
} | |||
run_test() { | |||
# usage: run_test [-tag <tag>] [-Ddef...] [-check <check>] checkargs ... | |||
tag= | |||
check=check_regexps | |||
while true; do | |||
select= | |||
case $1 in | |||
-tag) | |||
select=`expr substr $1 2 ${#1}` | |||
eval $select='$2' | |||
;; | |||
esac | |||
if [ -z "$select" ]; then | |||
break | |||
fi | |||
shift | |||
shift | |||
done | |||
defs= | |||
while expr "x$1" : "x-D.*" > /dev/null; do | |||
defs="DEFS+='$1' $defs" | |||
shift | |||
done | |||
if [ "x$1" = "x-check" ]; then | |||
check=$2 | |||
shift | |||
shift | |||
fi | |||
$make $makeopts touch > /dev/null 2>&1 | |||
build_run "$tag" "$defs" | |||
check_result 'check result' "$check" "$@" | |||
} | |||
quick_run() { | |||
# usage: quick_run <tag> [-Ddef...] | |||
tag="$1" | |||
shift | |||
defs= | |||
while expr "x$1" : "x-D.*" > /dev/null; do | |||
defs="DEFS+='$1' $defs" | |||
shift | |||
done | |||
$make $makeopts touch > /dev/null 2>&1 | |||
build_run "$tag" "$defs" | |||
} | |||
quick_check() { | |||
# usage: quick_check <tag> checkargs ... | |||
tag="$1" | |||
shift | |||
check_result "$tag" check_regexps "$@" | |||
} | |||
## kernel image | |||
osimg=$(make_print ucoreimg) | |||
## swap image | |||
swapimg=$(make_print swapimg) | |||
## set default qemu-options | |||
qemuopts="-hda $osimg -drive file=$swapimg,media=disk,cache=writeback" | |||
## set break-function, default is readline | |||
brkfun=readline | |||
## check now!! | |||
quick_run 'Check VMM' | |||
pts=5 | |||
quick_check 'check pmm' \ | |||
'memory management: default_pmm_manager' \ | |||
'check_alloc_page() succeeded!' \ | |||
'check_pgdir() succeeded!' \ | |||
'check_boot_pgdir() succeeded!' | |||
pts=5 | |||
quick_check 'check page table' \ | |||
'PDE(0e0) c0000000-f8000000 38000000 urw' \ | |||
' |-- PTE(38000) c0000000-f8000000 38000000 -rw' \ | |||
'PDE(001) fac00000-fb000000 00400000 -rw' \ | |||
' |-- PTE(000e0) faf00000-fafe0000 000e0000 urw' \ | |||
' |-- PTE(00001) fafeb000-fafec000 00001000 -rw' | |||
pts=25 | |||
quick_check 'check vmm' \ | |||
'check_vma_struct() succeeded!' \ | |||
'page fault at 0x00000100: K/W [no page found].' \ | |||
'check_pgfault() succeeded!' \ | |||
'check_vmm() succeeded.' | |||
pts=20 | |||
quick_check 'check swap page fault' \ | |||
'page fault at 0x00001000: K/W [no page found].' \ | |||
'page fault at 0x00002000: K/W [no page found].' \ | |||
'page fault at 0x00003000: K/W [no page found].' \ | |||
'page fault at 0x00004000: K/W [no page found].' \ | |||
'write Virt Page e in fifo_check_swap' \ | |||
'page fault at 0x00005000: K/W [no page found].' \ | |||
'page fault at 0x00001000: K/W [no page found]' \ | |||
'page fault at 0x00002000: K/W [no page found].' \ | |||
'page fault at 0x00003000: K/W [no page found].' \ | |||
'page fault at 0x00004000: K/W [no page found].' \ | |||
'check_swap() succeeded!' | |||
pts=5 | |||
quick_check 'check ticks' \ | |||
'++ setup timer interrupts' | |||
pts=30 | |||
quick_check 'check initproc' \ | |||
'this initproc, pid = 1, name = "init"' \ | |||
'To U: "Hello world!!".' \ | |||
'To U: "en.., Bye, Bye. :)"' | |||
## print final-score | |||
show_final |
@ -0,0 +1,58 @@ | |||
/* Simple linker script for the ucore kernel. | |||
See the GNU ld 'info' manual ("info ld") to learn the syntax. */ | |||
OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386") | |||
OUTPUT_ARCH(i386) | |||
ENTRY(kern_entry) | |||
SECTIONS { | |||
/* Load the kernel at this address: "." means the current address */ | |||
. = 0xC0100000; | |||
.text : { | |||
*(.text .stub .text.* .gnu.linkonce.t.*) | |||
} | |||
PROVIDE(etext = .); /* Define the 'etext' symbol to this value */ | |||
.rodata : { | |||
*(.rodata .rodata.* .gnu.linkonce.r.*) | |||
} | |||
/* Include debugging information in kernel memory */ | |||
.stab : { | |||
PROVIDE(__STAB_BEGIN__ = .); | |||
*(.stab); | |||
PROVIDE(__STAB_END__ = .); | |||
BYTE(0) /* Force the linker to allocate space | |||
for this section */ | |||
} | |||
.stabstr : { | |||
PROVIDE(__STABSTR_BEGIN__ = .); | |||
*(.stabstr); | |||
PROVIDE(__STABSTR_END__ = .); | |||
BYTE(0) /* Force the linker to allocate space | |||
for this section */ | |||
} | |||
/* Adjust the address for the data segment to the next page */ | |||
. = ALIGN(0x1000); | |||
/* The data segment */ | |||
.data : { | |||
*(.data) | |||
} | |||
PROVIDE(edata = .); | |||
.bss : { | |||
*(.bss) | |||
} | |||
PROVIDE(end = .); | |||
/DISCARD/ : { | |||
*(.eh_frame .note.GNU-stack) | |||
} | |||
} |
@ -0,0 +1,43 @@ | |||
#include <stdio.h> | |||
#include <errno.h> | |||
#include <string.h> | |||
#include <sys/stat.h> | |||
int | |||
main(int argc, char *argv[]) { | |||
struct stat st; | |||
if (argc != 3) { | |||
fprintf(stderr, "Usage: <input filename> <output filename>\n"); | |||
return -1; | |||
} | |||
if (stat(argv[1], &st) != 0) { | |||
fprintf(stderr, "Error opening file '%s': %s\n", argv[1], strerror(errno)); | |||
return -1; | |||
} | |||
printf("'%s' size: %lld bytes\n", argv[1], (long long)st.st_size); | |||
if (st.st_size > 510) { | |||
fprintf(stderr, "%lld >> 510!!\n", (long long)st.st_size); | |||
return -1; | |||
} | |||
char buf[512]; | |||
memset(buf, 0, sizeof(buf)); | |||
FILE *ifp = fopen(argv[1], "rb"); | |||
int size = fread(buf, 1, st.st_size, ifp); | |||
if (size != st.st_size) { | |||
fprintf(stderr, "read '%s' error, size is %d.\n", argv[1], size); | |||
return -1; | |||
} | |||
fclose(ifp); | |||
buf[510] = 0x55; | |||
buf[511] = 0xAA; | |||
FILE *ofp = fopen(argv[2], "wb+"); | |||
size = fwrite(buf, 1, 512, ofp); | |||
if (size != 512) { | |||
fprintf(stderr, "write '%s' error, size is %d.\n", argv[2], size); | |||
return -1; | |||
} | |||
fclose(ofp); | |||
printf("build 512 bytes boot sector: '%s' success!\n", argv[2]); | |||
return 0; | |||
} | |||
@ -0,0 +1,29 @@ | |||
#include <stdio.h> | |||
int | |||
main(void) { | |||
printf("# handler\n"); | |||
printf(".text\n"); | |||
printf(".globl __alltraps\n"); | |||
int i; | |||
for (i = 0; i < 256; i ++) { | |||
printf(".globl vector%d\n", i); | |||
printf("vector%d:\n", i); | |||
if ((i < 8 || i > 14) && i != 17) { | |||
printf(" pushl $0\n"); | |||
} | |||
printf(" pushl $%d\n", i); | |||
printf(" jmp __alltraps\n"); | |||
} | |||
printf("\n"); | |||
printf("# vector table\n"); | |||
printf(".data\n"); | |||
printf(".globl __vectors\n"); | |||
printf("__vectors:\n"); | |||
for (i = 0; i < 256; i ++) { | |||
printf(" .long vector%d\n", i); | |||
} | |||
return 0; | |||
} | |||