|
|
- # lab7 理解race condition
- ## x86模拟运行环境
- x86.py是一个模拟执行基于汇编代码的多线程执行过程的模拟器。这里的汇编语法是基于很简单的x86汇编语法。
- 且没有包括OS的调度、context切换和中断处理过程。每条指令大小为一个byte。每个变量占4个byte
- 在硬件上模拟了4个通用寄存器:
- ```
- %ax, %bx, %cx, %dx
- ```
- 一个程序计数器`pc`,一个堆栈寄存器`sp`,和一小部分指令:
- ```
- mov immediate, register # immediate value --> register
- mov memory, register # memory --> register
- mov register, register # register --> register
- mov register, memory # register --> memory
- mov immediate, memory # immediate value --> memory
-
- add immediate, register # register = register + immediate
- add register1, register2 # register2 = register2 + register1
- sub immediate, register # register = register - immediate
- sub register1, register2 # register2 = register2 - register1
-
- test immediate, register # compare immediate and register (set condition codes)
- test register, immediate # compare register and immediate (set condition codes)
- test register, register # compare register and register (set condition codes)
-
- jne # jump if test'd values are not equal
- je # jump if test'd values are equal
- jlt # jump if test'd second is less than first
- jlte # jump if test'd second is less than or equal first
- jgt # jump if test'd second is greater than first
- jgte # jump if test'd second is greater than or equal first
-
- xchg register, memory # atomic exchange:
- # put value of register into memory
- # return old contents of memory into reg
- # do both things atomically
-
- nop # no op
- halt # stop
- push memory or register # push value in memory or from reg onto stack
- # stack is defined by sp register
- pop [register] # pop value off stack (into optional register)
- call label # call function at label
- yield # switch to the next thread in the runqueue
- ```
- 注意:
- - 'immediate' 格式是 $number
- - 'memory' 格式是 'number' 或 '(reg)' 或 'number(reg)' 或 'number(reg,reg)'
- - (%cx) -> 在括号中的register cx 的值 形成 address
- - 2000 -> 2000 形成 address
- - 1000(%dx) -> 1000 + dx的值 形成 address
- - 10(%ax,%bx) -> 10 + ax的值 + bx的值 形成 address
- - 'register' 格式是 %ax, %bx, %cx, %dx
-
-
- 下面是一个代码片段:
- ```
- .main
- mov 2000, %ax # 取地址2000处的内存单元的内容,并赋值给ax
- add $1, %ax # ax=ax+1
- mov %ax, 2000 # 把ax的内容存储到地址2000处的内存单元中
- halt
- ```
- 其含义如下
- ```
- 2000 -> 2000 形成地址 address
- (%cx) -> cx的内容 形成地址 address
- 1000(%dx) -> (1000+dx) 形成地址 address
- 10(%ax,%bx) -> (10+ax+bx) 形成地址 address
- halt -> 执行结束
- ```
-
- 循环执行的小例子片段
- ```
- .main
- .top
- sub $1,%dx
- test $0,%dx
- jgte .top
- halt
- ```
-
- x86.py模拟器运行参数
- ```
- -h, --help show this help message and exit
- -s SEED, --seed=SEED the random seed
- -t NUMTHREADS, --threads=NUMTHREADS
- number of threads
- -p PROGFILE, --program=PROGFILE
- source program (in .s)
- -i INTFREQ, --interrupt=INTFREQ
- interrupt frequency
- -r, --randints if interrupts are random
- -a ARGV, --argv=ARGV comma-separated per-thread args (e.g., ax=1,ax=2 sets
- thread 0 ax reg to 1 and thread 1 ax reg to 2);
- specify multiple regs per thread via colon-separated
- list (e.g., ax=1:bx=2,cx=3 sets thread 0 ax and bx and
- just cx for thread 1)
- -L LOADADDR, --loadaddr=LOADADDR
- address where to load code
- -m MEMSIZE, --memsize=MEMSIZE
- size of address space (KB)
- -M MEMTRACE, --memtrace=MEMTRACE
- comma-separated list of addrs to trace (e.g.,
- 20000,20001)
- -R REGTRACE, --regtrace=REGTRACE
- comma-separated list of regs to trace (e.g.,
- ax,bx,cx,dx)
- -C, --cctrace should we trace condition codes
- -S, --printstats print some extra stats
- -v, --verbose print some extra info
- -c, --compute compute answers for me
-
- ```
-
- 执行举例
- ```
- $ ./x86.py -p simple-race.s -t 1 -M 2000 -R ax,bx
-
- 2000 ax bx Thread 0
- ? ? ?
- ? ? ? 1000 mov 2000, %ax
- ? ? ? 1001 add $1, %ax
- ? ? ? 1002 mov %ax, 2000
- ? ? ? 1003 halt
- ```
-
- 如果加上参数 `-c`可得到具体执行结果
- ```
- $ ./x86.py -p simple-race.s -t 1 -M 2000 -R ax,bx -c
-
- 2000 ax bx Thread 0
- 0 0 0
- 0 0 0 1000 mov 2000, %ax
- 0 1 0 1001 add $1, %ax
- 1 1 0 1002 mov %ax, 2000
- 1 1 0 1003 halt
- ```
-
- 另外一个执行的例子
- ```
- $ ./x86.py -p loop.s -t 1 -a dx=3 -R dx -C -c
-
- dx >= > <= < != == Thread 0
- 3 0 0 0 0 0 0
- 2 0 0 0 0 0 0 1000 sub $1,%dx
- 2 1 1 0 0 1 0 1001 test $0,%dx
- 2 1 1 0 0 1 0 1002 jgte .top
- 1 1 1 0 0 1 0 1000 sub $1,%dx
- 1 1 1 0 0 1 0 1001 test $0,%dx
- 1 1 1 0 0 1 0 1002 jgte .top
- 0 1 1 0 0 1 0 1000 sub $1,%dx
- 0 1 0 1 0 0 1 1001 test $0,%dx
- 0 1 0 1 0 0 1 1002 jgte .top
- 0 1 0 1 0 0 1 1003 halt
- ```
-
- 多线程存在race condition 的例子 looping-race-nolock.s
- ```
- .main
- .top
- # critical section
- mov 2000, %ax # get the value at the address
- add $1, %ax # increment it
- mov %ax, 2000 # store it back
-
- # see if we're still looping
- sub $1, %bx
- test $0, %bx
- jgt .top
-
- halt
- ```
-
- 执行结果:
- ```
- $ ./x86.py -p looping-race-nolock.s -t 2 -a bx=1 -M 2000 -c
-
- 2000 bx Thread 0 Thread 1
- 0 1
- 0 1 1000 mov 2000, %ax
- 0 1 1001 add $1, %ax
- 1 1 1002 mov %ax, 2000
- 1 0 1003 sub $1, %bx
- 1 0 1004 test $0, %bx
- 1 0 1005 jgt .top
- 1 0 1006 halt
- 1 1 ----- Halt;Switch ----- ----- Halt;Switch -----
- 1 1 1000 mov 2000, %ax
- 1 1 1001 add $1, %ax
- 2 1 1002 mov %ax, 2000
- 2 0 1003 sub $1, %bx
- 2 0 1004 test $0, %bx
- 2 0 1005 jgt .top
- 2 0 1006 halt
- ```
-
- 多线程存在 race condition 的例子 looping-race-nolock.s 在引入中断后,会产生race condition.
- ```
- $ ./x86.py -p looping-race-nolock.s -t 2 -a bx=1 -M 2000 -i 2
-
- 2000 Thread 0 Thread 1
- ?
- ? 1000 mov 2000, %ax
- ? 1001 add $1, %ax
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1000 mov 2000, %ax
- ? 1001 add $1, %ax
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1002 mov %ax, 2000
- ? 1003 sub $1, %bx
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1002 mov %ax, 2000
- ? 1003 sub $1, %bx
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1004 test $0, %bx
- ? 1005 jgt .top
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1004 test $0, %bx
- ? 1005 jgt .top
- ? ------ Interrupt ------ ------ Interrupt ------
- ? 1006 halt
- ? ----- Halt;Switch ----- ----- Halt;Switch -----
- ? 1006 halt
- ```
-
-
|