|
|
- #include <proc.h>
- #include <kmalloc.h>
- #include <string.h>
- #include <sync.h>
- #include <pmm.h>
- #include <error.h>
- #include <sched.h>
- #include <elf.h>
- #include <vmm.h>
- #include <trap.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <assert.h>
-
- /* ------------- process/thread mechanism design&implementation -------------
- (an simplified Linux process/thread mechanism )
- introduction:
- ucore implements a simple process/thread mechanism. process contains the independent memory sapce, at least one threads
- for execution, the kernel data(for management), processor state (for context switch), files(in lab6), etc. ucore needs to
- manage all these details efficiently. In ucore, a thread is just a special kind of process(share process's memory).
- ------------------------------
- process state : meaning -- reason
- PROC_UNINIT : uninitialized -- alloc_proc
- PROC_SLEEPING : sleeping -- try_free_pages, do_wait, do_sleep
- PROC_RUNNABLE : runnable(maybe running) -- proc_init, wakeup_proc,
- PROC_ZOMBIE : almost dead -- do_exit
-
- -----------------------------
- process state changing:
-
- alloc_proc RUNNING
- + +--<----<--+
- + + proc_run +
- V +-->---->--+
- PROC_UNINIT -- proc_init/wakeup_proc --> PROC_RUNNABLE -- try_free_pages/do_wait/do_sleep --> PROC_SLEEPING --
- A + +
- | +--- do_exit --> PROC_ZOMBIE +
- + +
- -----------------------wakeup_proc----------------------------------
- -----------------------------
- process relations
- parent: proc->parent (proc is children)
- children: proc->cptr (proc is parent)
- older sibling: proc->optr (proc is younger sibling)
- younger sibling: proc->yptr (proc is older sibling)
- -----------------------------
- related syscall for process:
- SYS_exit : process exit, -->do_exit
- SYS_fork : create child process, dup mm -->do_fork-->wakeup_proc
- SYS_wait : wait process -->do_wait
- SYS_exec : after fork, process execute a program -->load a program and refresh the mm
- SYS_clone : create child thread -->do_fork-->wakeup_proc
- SYS_yield : process flag itself need resecheduling, -- proc->need_sched=1, then scheduler will rescheule this process
- SYS_sleep : process sleep -->do_sleep
- SYS_kill : kill process -->do_kill-->proc->flags |= PF_EXITING
- -->wakeup_proc-->do_wait-->do_exit
- SYS_getpid : get the process's pid
-
- */
-
- // the process set's list
- list_entry_t proc_list;
-
- #define HASH_SHIFT 10
- #define HASH_LIST_SIZE (1 << HASH_SHIFT)
- #define pid_hashfn(x) (hash32(x, HASH_SHIFT))
-
- // has list for process set based on pid
- static list_entry_t hash_list[HASH_LIST_SIZE];
-
- // idle proc
- struct proc_struct *idleproc = NULL;
- // init proc
- struct proc_struct *initproc = NULL;
- // current proc
- struct proc_struct *current = NULL;
-
- static int nr_process = 0;
-
- void kernel_thread_entry(void);
- void forkrets(struct trapframe *tf);
- void switch_to(struct context *from, struct context *to);
-
- // alloc_proc - alloc a proc_struct and init all fields of proc_struct
- static struct proc_struct *
- alloc_proc(void) {
- struct proc_struct *proc = kmalloc(sizeof(struct proc_struct));
- if (proc != NULL) {
- //LAB4:EXERCISE1 YOUR CODE
- /*
- * below fields in proc_struct need to be initialized
- * enum proc_state state; // Process state
- * int pid; // Process ID
- * int runs; // the running times of Proces
- * uintptr_t kstack; // Process kernel stack
- * volatile bool need_resched; // bool value: need to be rescheduled to release CPU?
- * struct proc_struct *parent; // the parent process
- * struct mm_struct *mm; // Process's memory management field
- * struct context context; // Switch here to run process
- * struct trapframe *tf; // Trap frame for current interrupt
- * uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT)
- * uint32_t flags; // Process flag
- * char name[PROC_NAME_LEN + 1]; // Process name
- */
- }
- return proc;
- }
-
- // set_proc_name - set the name of proc
- char *
- set_proc_name(struct proc_struct *proc, const char *name) {
- memset(proc->name, 0, sizeof(proc->name));
- return memcpy(proc->name, name, PROC_NAME_LEN);
- }
-
- // get_proc_name - get the name of proc
- char *
- get_proc_name(struct proc_struct *proc) {
- static char name[PROC_NAME_LEN + 1];
- memset(name, 0, sizeof(name));
- return memcpy(name, proc->name, PROC_NAME_LEN);
- }
-
- // get_pid - alloc a unique pid for process
- static int
- get_pid(void) {
- static_assert(MAX_PID > MAX_PROCESS);
- struct proc_struct *proc;
- list_entry_t *list = &proc_list, *le;
- static int next_safe = MAX_PID, last_pid = MAX_PID;
- if (++ last_pid >= MAX_PID) {
- last_pid = 1;
- goto inside;
- }
- if (last_pid >= next_safe) {
- inside:
- next_safe = MAX_PID;
- repeat:
- le = list;
- while ((le = list_next(le)) != list) {
- proc = le2proc(le, list_link);
- if (proc->pid == last_pid) {
- if (++ last_pid >= next_safe) {
- if (last_pid >= MAX_PID) {
- last_pid = 1;
- }
- next_safe = MAX_PID;
- goto repeat;
- }
- }
- else if (proc->pid > last_pid && next_safe > proc->pid) {
- next_safe = proc->pid;
- }
- }
- }
- return last_pid;
- }
-
- // proc_run - make process "proc" running on cpu
- // NOTE: before call switch_to, should load base addr of "proc"'s new PDT
- void
- proc_run(struct proc_struct *proc) {
- if (proc != current) {
- bool intr_flag;
- struct proc_struct *prev = current, *next = proc;
- local_intr_save(intr_flag);
- {
- current = proc;
- load_esp0(next->kstack + KSTACKSIZE);
- lcr3(next->cr3);
- switch_to(&(prev->context), &(next->context));
- }
- local_intr_restore(intr_flag);
- }
- }
-
- // forkret -- the first kernel entry point of a new thread/process
- // NOTE: the addr of forkret is setted in copy_thread function
- // after switch_to, the current proc will execute here.
- static void
- forkret(void) {
- forkrets(current->tf);
- }
-
- // hash_proc - add proc into proc hash_list
- static void
- hash_proc(struct proc_struct *proc) {
- list_add(hash_list + pid_hashfn(proc->pid), &(proc->hash_link));
- }
-
- // find_proc - find proc frome proc hash_list according to pid
- struct proc_struct *
- find_proc(int pid) {
- if (0 < pid && pid < MAX_PID) {
- list_entry_t *list = hash_list + pid_hashfn(pid), *le = list;
- while ((le = list_next(le)) != list) {
- struct proc_struct *proc = le2proc(le, hash_link);
- if (proc->pid == pid) {
- return proc;
- }
- }
- }
- return NULL;
- }
-
- // kernel_thread - create a kernel thread using "fn" function
- // NOTE: the contents of temp trapframe tf will be copied to
- // proc->tf in do_fork-->copy_thread function
- int
- kernel_thread(int (*fn)(void *), void *arg, uint32_t clone_flags) {
- struct trapframe tf;
- memset(&tf, 0, sizeof(struct trapframe));
- tf.tf_cs = KERNEL_CS;
- tf.tf_ds = tf.tf_es = tf.tf_ss = KERNEL_DS;
- tf.tf_regs.reg_ebx = (uint32_t)fn;
- tf.tf_regs.reg_edx = (uint32_t)arg;
- tf.tf_eip = (uint32_t)kernel_thread_entry;
- return do_fork(clone_flags | CLONE_VM, 0, &tf);
- }
-
- // setup_kstack - alloc pages with size KSTACKPAGE as process kernel stack
- static int
- setup_kstack(struct proc_struct *proc) {
- struct Page *page = alloc_pages(KSTACKPAGE);
- if (page != NULL) {
- proc->kstack = (uintptr_t)page2kva(page);
- return 0;
- }
- return -E_NO_MEM;
- }
-
- // put_kstack - free the memory space of process kernel stack
- static void
- put_kstack(struct proc_struct *proc) {
- free_pages(kva2page((void *)(proc->kstack)), KSTACKPAGE);
- }
-
- // copy_mm - process "proc" duplicate OR share process "current"'s mm according clone_flags
- // - if clone_flags & CLONE_VM, then "share" ; else "duplicate"
- static int
- copy_mm(uint32_t clone_flags, struct proc_struct *proc) {
- assert(current->mm == NULL);
- /* do nothing in this project */
- return 0;
- }
-
- // copy_thread - setup the trapframe on the process's kernel stack top and
- // - setup the kernel entry point and stack of process
- static void
- copy_thread(struct proc_struct *proc, uintptr_t esp, struct trapframe *tf) {
- proc->tf = (struct trapframe *)(proc->kstack + KSTACKSIZE) - 1;
- *(proc->tf) = *tf;
- proc->tf->tf_regs.reg_eax = 0;
- proc->tf->tf_esp = esp;
- proc->tf->tf_eflags |= FL_IF;
-
- proc->context.eip = (uintptr_t)forkret;
- proc->context.esp = (uintptr_t)(proc->tf);
- }
-
- /* do_fork - parent process for a new child process
- * @clone_flags: used to guide how to clone the child process
- * @stack: the parent's user stack pointer. if stack==0, It means to fork a kernel thread.
- * @tf: the trapframe info, which will be copied to child process's proc->tf
- */
- int
- do_fork(uint32_t clone_flags, uintptr_t stack, struct trapframe *tf) {
- int ret = -E_NO_FREE_PROC;
- struct proc_struct *proc;
- if (nr_process >= MAX_PROCESS) {
- goto fork_out;
- }
- ret = -E_NO_MEM;
- //LAB4:EXERCISE2 YOUR CODE
- /*
- * Some Useful MACROs, Functions and DEFINEs, you can use them in below implementation.
- * MACROs or Functions:
- * alloc_proc: create a proc struct and init fields (lab4:exercise1)
- * setup_kstack: alloc pages with size KSTACKPAGE as process kernel stack
- * copy_mm: process "proc" duplicate OR share process "current"'s mm according clone_flags
- * if clone_flags & CLONE_VM, then "share" ; else "duplicate"
- * copy_thread: setup the trapframe on the process's kernel stack top and
- * setup the kernel entry point and stack of process
- * hash_proc: add proc into proc hash_list
- * get_pid: alloc a unique pid for process
- * wakup_proc: set proc->state = PROC_RUNNABLE
- * VARIABLES:
- * proc_list: the process set's list
- * nr_process: the number of process set
- */
-
- // 1. call alloc_proc to allocate a proc_struct
- // 2. call setup_kstack to allocate a kernel stack for child process
- // 3. call copy_mm to dup OR share mm according clone_flag
- // 4. call copy_thread to setup tf & context in proc_struct
- // 5. insert proc_struct into hash_list && proc_list
- // 6. call wakup_proc to make the new child process RUNNABLE
- // 7. set ret vaule using child proc's pid
- fork_out:
- return ret;
-
- bad_fork_cleanup_kstack:
- put_kstack(proc);
- bad_fork_cleanup_proc:
- kfree(proc);
- goto fork_out;
- }
-
- // do_exit - called by sys_exit
- // 1. call exit_mmap & put_pgdir & mm_destroy to free the almost all memory space of process
- // 2. set process' state as PROC_ZOMBIE, then call wakeup_proc(parent) to ask parent reclaim itself.
- // 3. call scheduler to switch to other process
- int
- do_exit(int error_code) {
- panic("process exit!!.\n");
- }
-
- // init_main - the second kernel thread used to create user_main kernel threads
- static int
- init_main(void *arg) {
- cprintf("this initproc, pid = %d, name = \"%s\"\n", current->pid, get_proc_name(current));
- cprintf("To U: \"%s\".\n", (const char *)arg);
- cprintf("To U: \"en.., Bye, Bye. :)\"\n");
- return 0;
- }
-
- // proc_init - set up the first kernel thread idleproc "idle" by itself and
- // - create the second kernel thread init_main
- void
- proc_init(void) {
- int i;
-
- list_init(&proc_list);
- for (i = 0; i < HASH_LIST_SIZE; i ++) {
- list_init(hash_list + i);
- }
-
- if ((idleproc = alloc_proc()) == NULL) {
- panic("cannot alloc idleproc.\n");
- }
-
- idleproc->pid = 0;
- idleproc->state = PROC_RUNNABLE;
- idleproc->kstack = (uintptr_t)bootstack;
- idleproc->need_resched = 1;
- set_proc_name(idleproc, "idle");
- nr_process ++;
-
- current = idleproc;
-
- int pid = kernel_thread(init_main, "Hello world!!", 0);
- if (pid <= 0) {
- panic("create init_main failed.\n");
- }
-
- initproc = find_proc(pid);
- set_proc_name(initproc, "init");
-
- assert(idleproc != NULL && idleproc->pid == 0);
- assert(initproc != NULL && initproc->pid == 1);
- }
-
- // cpu_idle - at the end of kern_init, the first kernel thread idleproc will do below works
- void
- cpu_idle(void) {
- while (1) {
- if (current->need_resched) {
- schedule();
- }
- }
- }
-
|