|
|
- #include <defs.h>
- #include <list.h>
- #include <memlayout.h>
- #include <assert.h>
- #include <kmalloc.h>
- #include <sync.h>
- #include <pmm.h>
- #include <stdio.h>
- #include <rb_tree.h>
-
- /* The slab allocator used in ucore is based on an algorithm first introduced by
- Jeff Bonwick for the SunOS operating system. The paper can be download from
- http://citeseer.ist.psu.edu/bonwick94slab.html
- An implementation of the Slab Allocator as described in outline in;
- UNIX Internals: The New Frontiers by Uresh Vahalia
- Pub: Prentice Hall ISBN 0-13-101908-2
- Within a kernel, a considerable amount of memory is allocated for a finite set
- of objects such as file descriptors and other common structures. Jeff found that
- the amount of time required to initialize a regular object in the kernel exceeded
- the amount of time required to allocate and deallocate it. His conclusion was
- that instead of freeing the memory back to a global pool, he would have the memory
- remain initialized for its intended purpose.
- In our simple slab implementation, the the high-level organization of the slab
- structures is simplied. At the highest level is an array slab_cache[SLAB_CACHE_NUM],
- and each array element is a slab_cache which has slab chains. Each slab_cache has
- two list, one list chains the full allocated slab, and another list chains the notfull
- allocated(maybe empty) slab. And each slab has fixed number(2^n) of pages. In each
- slab, there are a lot of objects (such as ) with same fixed size(32B ~ 128KB).
-
- +----------------------------------+
- | slab_cache[0] for 0~32B obj |
- +----------------------------------+
- | slab_cache[1] for 33B~64B obj |-->lists for slabs
- +----------------------------------+ |
- | slab_cache[2] for 65B~128B obj | |
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
- +----------------------------------+ |
- | slab_cache[12]for 64KB~128KB obj | |
- +----------------------------------+ |
- |
- slabs_full/slabs_not +---------------------+
- -<-----------<----------<-+
- | | |
- slab1 slab2 slab3...
- |
- |-------|-------|
- pages1 pages2 pages3...
- |
- |
- |
- slab_t+n*bufctl_t+obj1-obj2-obj3...objn (the size of obj is small)
- |
- OR
- |
- obj1-obj2-obj3...objn WITH slab_t+n*bufctl_t in another slab (the size of obj is BIG)
-
- The important functions are:
- kmem_cache_grow(kmem_cache_t *cachep)
- kmem_slab_destroy(kmem_cache_t *cachep, slab_t *slabp)
- kmalloc(size_t size): used by outside functions need dynamicly get memory
- kfree(void *objp): used by outside functions need dynamicly release memory
- */
-
- #define BUFCTL_END 0xFFFFFFFFL // the signature of the last bufctl
- #define SLAB_LIMIT 0xFFFFFFFEL // the max value of obj number
-
- typedef size_t kmem_bufctl_t; //the index of obj in slab
-
- typedef struct slab_s {
- list_entry_t slab_link; // the list entry linked to kmem_cache list
- void *s_mem; // the kernel virtual address of the first obj in slab
- size_t inuse; // the number of allocated objs
- size_t offset; // the first obj's offset value in slab
- kmem_bufctl_t free; // the first free obj's index in slab
- } slab_t;
-
- // get the slab address according to the link element (see list.h)
- #define le2slab(le, member) \
- to_struct((le), slab_t, member)
-
- typedef struct kmem_cache_s kmem_cache_t;
-
-
- struct kmem_cache_s {
- list_entry_t slabs_full; // list for fully allocated slabs
- list_entry_t slabs_notfull; // list for not-fully allocated slabs
-
- size_t objsize; // the fixed size of obj
- size_t num; // number of objs per slab
- size_t offset; // this first obj's offset in slab
- bool off_slab; // the control part of slab in slab or not.
-
- /* order of pages per slab (2^n) */
- size_t page_order;
-
- kmem_cache_t *slab_cachep;
- };
-
- #define MIN_SIZE_ORDER 5 // 32
- #define MAX_SIZE_ORDER 17 // 128k
- #define SLAB_CACHE_NUM (MAX_SIZE_ORDER - MIN_SIZE_ORDER + 1)
-
- static kmem_cache_t slab_cache[SLAB_CACHE_NUM];
-
- static void init_kmem_cache(kmem_cache_t *cachep, size_t objsize, size_t align);
- static void check_slab(void);
-
-
- //slab_init - call init_kmem_cache function to reset the slab_cache array
- static void
- slab_init(void) {
- size_t i;
- //the align bit for obj in slab. 2^n could be better for performance
- size_t align = 16;
- for (i = 0; i < SLAB_CACHE_NUM; i ++) {
- init_kmem_cache(slab_cache + i, 1 << (i + MIN_SIZE_ORDER), align);
- }
- check_slab();
- }
-
- inline void
- kmalloc_init(void) {
- slab_init();
- cprintf("kmalloc_init() succeeded!\n");
- }
-
- //slab_allocated - summary the total size of allocated objs
- static size_t
- slab_allocated(void) {
- size_t total = 0;
- int i;
- bool intr_flag;
- local_intr_save(intr_flag);
- {
- for (i = 0; i < SLAB_CACHE_NUM; i ++) {
- kmem_cache_t *cachep = slab_cache + i;
- list_entry_t *list, *le;
- list = le = &(cachep->slabs_full);
- while ((le = list_next(le)) != list) {
- total += cachep->num * cachep->objsize;
- }
- list = le = &(cachep->slabs_notfull);
- while ((le = list_next(le)) != list) {
- slab_t *slabp = le2slab(le, slab_link);
- total += slabp->inuse * cachep->objsize;
- }
- }
- }
- local_intr_restore(intr_flag);
- return total;
- }
-
- inline size_t
- kallocated(void) {
- return slab_allocated();
- }
-
- // slab_mgmt_size - get the size of slab control area (slab_t+num*kmem_bufctl_t)
- static size_t
- slab_mgmt_size(size_t num, size_t align) {
- return ROUNDUP(sizeof(slab_t) + num * sizeof(kmem_bufctl_t), align);
- }
-
- // cacahe_estimate - estimate the number of objs in a slab
- static void
- cache_estimate(size_t order, size_t objsize, size_t align, bool off_slab, size_t *remainder, size_t *num) {
- size_t nr_objs, mgmt_size;
- size_t slab_size = (PGSIZE << order);
-
- if (off_slab) {
- mgmt_size = 0;
- nr_objs = slab_size / objsize;
- if (nr_objs > SLAB_LIMIT) {
- nr_objs = SLAB_LIMIT;
- }
- }
- else {
- nr_objs = (slab_size - sizeof(slab_t)) / (objsize + sizeof(kmem_bufctl_t));
- while (slab_mgmt_size(nr_objs, align) + nr_objs * objsize > slab_size) {
- nr_objs --;
- }
- if (nr_objs > SLAB_LIMIT) {
- nr_objs = SLAB_LIMIT;
- }
- mgmt_size = slab_mgmt_size(nr_objs, align);
- }
- *num = nr_objs;
- *remainder = slab_size - nr_objs * objsize - mgmt_size;
- }
-
- // calculate_slab_order - estimate the size(4K~4M) of slab
- // paramemters:
- // cachep: the slab_cache
- // objsize: the size of obj
- // align: align bit for objs
- // off_slab: the control part of slab in slab or not
- // left_over: the size of can not be used area in slab
- static void
- calculate_slab_order(kmem_cache_t *cachep, size_t objsize, size_t align, bool off_slab, size_t *left_over) {
- size_t order;
- for (order = 0; order <= KMALLOC_MAX_ORDER; order ++) {
- size_t num, remainder;
- cache_estimate(order, objsize, align, off_slab, &remainder, &num);
- if (num != 0) {
- if (off_slab) {
- size_t off_slab_limit = objsize - sizeof(slab_t);
- off_slab_limit /= sizeof(kmem_bufctl_t);
- if (num > off_slab_limit) {
- panic("off_slab: objsize = %d, num = %d.", objsize, num);
- }
- }
- if (remainder * 8 <= (PGSIZE << order)) {
- cachep->num = num;
- cachep->page_order = order;
- if (left_over != NULL) {
- *left_over = remainder;
- }
- return ;
- }
- }
- }
- panic("calculate_slab_over: failed.");
- }
-
- // getorder - find order, should satisfy n <= minest 2^order
- static inline size_t
- getorder(size_t n) {
- size_t order = MIN_SIZE_ORDER, order_size = (1 << order);
- for (; order <= MAX_SIZE_ORDER; order ++, order_size <<= 1) {
- if (n <= order_size) {
- return order;
- }
- }
- panic("getorder failed. %d\n", n);
- }
-
- // init_kmem_cache - initial a slab_cache cachep according to the obj with the size = objsize
- static void
- init_kmem_cache(kmem_cache_t *cachep, size_t objsize, size_t align) {
- list_init(&(cachep->slabs_full));
- list_init(&(cachep->slabs_notfull));
-
- objsize = ROUNDUP(objsize, align);
- cachep->objsize = objsize;
- cachep->off_slab = (objsize >= (PGSIZE >> 3));
-
- size_t left_over;
- calculate_slab_order(cachep, objsize, align, cachep->off_slab, &left_over);
-
- assert(cachep->num > 0);
-
- size_t mgmt_size = slab_mgmt_size(cachep->num, align);
-
- if (cachep->off_slab && left_over >= mgmt_size) {
- cachep->off_slab = 0;
- }
-
- if (cachep->off_slab) {
- cachep->offset = 0;
- cachep->slab_cachep = slab_cache + (getorder(mgmt_size) - MIN_SIZE_ORDER);
- }
- else {
- cachep->offset = mgmt_size;
- }
- }
-
- static void *kmem_cache_alloc(kmem_cache_t *cachep);
-
- #define slab_bufctl(slabp) \
- ((kmem_bufctl_t*)(((slab_t *)(slabp)) + 1))
-
- // kmem_cache_slabmgmt - get the address of a slab according to page
- // - and initialize the slab according to cachep
- static slab_t *
- kmem_cache_slabmgmt(kmem_cache_t *cachep, struct Page *page) {
- void *objp = page2kva(page);
- slab_t *slabp;
- if (cachep->off_slab) {
- if ((slabp = kmem_cache_alloc(cachep->slab_cachep)) == NULL) {
- return NULL;
- }
- }
- else {
- slabp = page2kva(page);
- }
- slabp->inuse = 0;
- slabp->offset = cachep->offset;
- slabp->s_mem = objp + cachep->offset;
- return slabp;
- }
-
- #define SET_PAGE_CACHE(page, cachep) \
- do { \
- struct Page *__page = (struct Page *)(page); \
- kmem_cache_t **__cachepp = (kmem_cache_t **)&(__page->page_link.next); \
- *__cachepp = (kmem_cache_t *)(cachep); \
- } while (0)
-
- #define SET_PAGE_SLAB(page, slabp) \
- do { \
- struct Page *__page = (struct Page *)(page); \
- slab_t **__cachepp = (slab_t **)&(__page->page_link.prev); \
- *__cachepp = (slab_t *)(slabp); \
- } while (0)
-
- // kmem_cache_grow - allocate a new slab by calling alloc_pages
- // - set control area in the new slab
- static bool
- kmem_cache_grow(kmem_cache_t *cachep) {
- struct Page *page = alloc_pages(1 << cachep->page_order);
- if (page == NULL) {
- goto failed;
- }
-
- slab_t *slabp;
- if ((slabp = kmem_cache_slabmgmt(cachep, page)) == NULL) {
- goto oops;
- }
-
- size_t order_size = (1 << cachep->page_order);
- do {
- //setup this page in the free list (see memlayout.h: struct page)???
- SET_PAGE_CACHE(page, cachep);
- SET_PAGE_SLAB(page, slabp);
- //this page is used for slab
- SetPageSlab(page);
- page ++;
- } while (-- order_size);
-
- int i;
- for (i = 0; i < cachep->num; i ++) {
- slab_bufctl(slabp)[i] = i + 1;
- }
- slab_bufctl(slabp)[cachep->num - 1] = BUFCTL_END;
- slabp->free = 0;
-
- bool intr_flag;
- local_intr_save(intr_flag);
- {
- list_add(&(cachep->slabs_notfull), &(slabp->slab_link));
- }
- local_intr_restore(intr_flag);
- return 1;
-
- oops:
- free_pages(page, 1 << cachep->page_order);
- failed:
- return 0;
- }
-
- // kmem_cache_alloc_one - allocate a obj in a slab
- static void *
- kmem_cache_alloc_one(kmem_cache_t *cachep, slab_t *slabp) {
- slabp->inuse ++;
- void *objp = slabp->s_mem + slabp->free * cachep->objsize;
- slabp->free = slab_bufctl(slabp)[slabp->free];
-
- if (slabp->free == BUFCTL_END) {
- list_del(&(slabp->slab_link));
- list_add(&(cachep->slabs_full), &(slabp->slab_link));
- }
- return objp;
- }
-
- // kmem_cache_alloc - call kmem_cache_alloc_one function to allocate a obj
- // - if no free obj, try to allocate a slab
- static void *
- kmem_cache_alloc(kmem_cache_t *cachep) {
- void *objp;
- bool intr_flag;
-
- try_again:
- local_intr_save(intr_flag);
- if (list_empty(&(cachep->slabs_notfull))) {
- goto alloc_new_slab;
- }
- slab_t *slabp = le2slab(list_next(&(cachep->slabs_notfull)), slab_link);
- objp = kmem_cache_alloc_one(cachep, slabp);
- local_intr_restore(intr_flag);
- return objp;
-
- alloc_new_slab:
- local_intr_restore(intr_flag);
-
- if (kmem_cache_grow(cachep)) {
- goto try_again;
- }
- return NULL;
- }
-
- // kmalloc - simple interface used by outside functions
- // - to allocate a free memory using kmem_cache_alloc function
- void *
- kmalloc(size_t size) {
- assert(size > 0);
- size_t order = getorder(size);
- if (order > MAX_SIZE_ORDER) {
- return NULL;
- }
- return kmem_cache_alloc(slab_cache + (order - MIN_SIZE_ORDER));
- }
-
- static void kmem_cache_free(kmem_cache_t *cachep, void *obj);
-
- // kmem_slab_destroy - call free_pages & kmem_cache_free to free a slab
- static void
- kmem_slab_destroy(kmem_cache_t *cachep, slab_t *slabp) {
- struct Page *page = kva2page(slabp->s_mem - slabp->offset);
-
- struct Page *p = page;
- size_t order_size = (1 << cachep->page_order);
- do {
- assert(PageSlab(p));
- ClearPageSlab(p);
- p ++;
- } while (-- order_size);
-
- free_pages(page, 1 << cachep->page_order);
-
- if (cachep->off_slab) {
- kmem_cache_free(cachep->slab_cachep, slabp);
- }
- }
-
- // kmem_cache_free_one - free an obj in a slab
- // - if slab->inuse==0, then free the slab
- static void
- kmem_cache_free_one(kmem_cache_t *cachep, slab_t *slabp, void *objp) {
- //should not use divide operator ???
- size_t objnr = (objp - slabp->s_mem) / cachep->objsize;
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
-
- slabp->inuse --;
-
- if (slabp->inuse == 0) {
- list_del(&(slabp->slab_link));
- kmem_slab_destroy(cachep, slabp);
- }
- else if (slabp->inuse == cachep->num -1 ) {
- list_del(&(slabp->slab_link));
- list_add(&(cachep->slabs_notfull), &(slabp->slab_link));
- }
- }
-
- #define GET_PAGE_CACHE(page) \
- (kmem_cache_t *)((page)->page_link.next)
-
- #define GET_PAGE_SLAB(page) \
- (slab_t *)((page)->page_link.prev)
-
- // kmem_cache_free - call kmem_cache_free_one function to free an obj
- static void
- kmem_cache_free(kmem_cache_t *cachep, void *objp) {
- bool intr_flag;
- struct Page *page = kva2page(objp);
-
- if (!PageSlab(page)) {
- panic("not a slab page %08x\n", objp);
- }
- local_intr_save(intr_flag);
- {
- kmem_cache_free_one(cachep, GET_PAGE_SLAB(page), objp);
- }
- local_intr_restore(intr_flag);
- }
-
- // kfree - simple interface used by ooutside functions to free an obj
- void
- kfree(void *objp) {
- kmem_cache_free(GET_PAGE_CACHE(kva2page(objp)), objp);
- }
-
- static inline void
- check_slab_empty(void) {
- int i;
- for (i = 0; i < SLAB_CACHE_NUM; i ++) {
- kmem_cache_t *cachep = slab_cache + i;
- assert(list_empty(&(cachep->slabs_full)));
- assert(list_empty(&(cachep->slabs_notfull)));
- }
- }
-
- void
- check_slab(void) {
- int i;
- void *v0, *v1;
-
- size_t nr_free_pages_store = nr_free_pages();
- size_t kernel_allocated_store = slab_allocated();
-
- /* slab must be empty now */
- check_slab_empty();
- assert(slab_allocated() == 0);
-
- kmem_cache_t *cachep0, *cachep1;
-
- cachep0 = slab_cache;
- assert(cachep0->objsize == 32 && cachep0->num > 1 && !cachep0->off_slab);
- assert((v0 = kmalloc(16)) != NULL);
-
- slab_t *slabp0, *slabp1;
-
- assert(!list_empty(&(cachep0->slabs_notfull)));
- slabp0 = le2slab(list_next(&(cachep0->slabs_notfull)), slab_link);
- assert(slabp0->inuse == 1 && list_next(&(slabp0->slab_link)) == &(cachep0->slabs_notfull));
-
- struct Page *p0, *p1;
- size_t order_size;
-
-
- p0 = kva2page(slabp0->s_mem - slabp0->offset), p1 = p0;
- order_size = (1 << cachep0->page_order);
- for (i = 0; i < cachep0->page_order; i ++, p1 ++) {
- assert(PageSlab(p1));
- assert(GET_PAGE_CACHE(p1) == cachep0 && GET_PAGE_SLAB(p1) == slabp0);
- }
-
- assert(v0 == slabp0->s_mem);
- assert((v1 = kmalloc(16)) != NULL && v1 == v0 + 32);
-
- kfree(v0);
- assert(slabp0->free == 0);
- kfree(v1);
- assert(list_empty(&(cachep0->slabs_notfull)));
-
- for (i = 0; i < cachep0->page_order; i ++, p0 ++) {
- assert(!PageSlab(p0));
- }
-
-
- v0 = kmalloc(16);
- assert(!list_empty(&(cachep0->slabs_notfull)));
- slabp0 = le2slab(list_next(&(cachep0->slabs_notfull)), slab_link);
-
- for (i = 0; i < cachep0->num - 1; i ++) {
- kmalloc(16);
- }
-
- assert(slabp0->inuse == cachep0->num);
- assert(list_next(&(cachep0->slabs_full)) == &(slabp0->slab_link));
- assert(list_empty(&(cachep0->slabs_notfull)));
-
- v1 = kmalloc(16);
- assert(!list_empty(&(cachep0->slabs_notfull)));
- slabp1 = le2slab(list_next(&(cachep0->slabs_notfull)), slab_link);
-
- kfree(v0);
- assert(list_empty(&(cachep0->slabs_full)));
- assert(list_next(&(slabp0->slab_link)) == &(slabp1->slab_link)
- || list_next(&(slabp1->slab_link)) == &(slabp0->slab_link));
-
- kfree(v1);
- assert(!list_empty(&(cachep0->slabs_notfull)));
- assert(list_next(&(cachep0->slabs_notfull)) == &(slabp0->slab_link));
- assert(list_next(&(slabp0->slab_link)) == &(cachep0->slabs_notfull));
-
- v1 = kmalloc(16);
- assert(v1 == v0);
- assert(list_next(&(cachep0->slabs_full)) == &(slabp0->slab_link));
- assert(list_empty(&(cachep0->slabs_notfull)));
-
- for (i = 0; i < cachep0->num; i ++) {
- kfree(v1 + i * cachep0->objsize);
- }
-
- assert(list_empty(&(cachep0->slabs_full)));
- assert(list_empty(&(cachep0->slabs_notfull)));
-
- cachep0 = slab_cache;
-
- bool has_off_slab = 0;
- for (i = 0; i < SLAB_CACHE_NUM; i ++, cachep0 ++) {
- if (cachep0->off_slab) {
- has_off_slab = 1;
- cachep1 = cachep0->slab_cachep;
- if (!cachep1->off_slab) {
- break;
- }
- }
- }
-
- if (!has_off_slab) {
- goto check_pass;
- }
-
- assert(cachep0->off_slab && !cachep1->off_slab);
- assert(cachep1 < cachep0);
-
- assert(list_empty(&(cachep0->slabs_full)));
- assert(list_empty(&(cachep0->slabs_notfull)));
-
- assert(list_empty(&(cachep1->slabs_full)));
- assert(list_empty(&(cachep1->slabs_notfull)));
-
- v0 = kmalloc(cachep0->objsize);
- p0 = kva2page(v0);
- assert(page2kva(p0) == v0);
-
- if (cachep0->num == 1) {
- assert(!list_empty(&(cachep0->slabs_full)));
- slabp0 = le2slab(list_next(&(cachep0->slabs_full)), slab_link);
- }
- else {
- assert(!list_empty(&(cachep0->slabs_notfull)));
- slabp0 = le2slab(list_next(&(cachep0->slabs_notfull)), slab_link);
- }
-
- assert(slabp0 != NULL);
-
- if (cachep1->num == 1) {
- assert(!list_empty(&(cachep1->slabs_full)));
- slabp1 = le2slab(list_next(&(cachep1->slabs_full)), slab_link);
- }
- else {
- assert(!list_empty(&(cachep1->slabs_notfull)));
- slabp1 = le2slab(list_next(&(cachep1->slabs_notfull)), slab_link);
- }
-
- assert(slabp1 != NULL);
-
- order_size = (1 << cachep0->page_order);
- for (i = 0; i < order_size; i ++, p0 ++) {
- assert(PageSlab(p0));
- assert(GET_PAGE_CACHE(p0) == cachep0 && GET_PAGE_SLAB(p0) == slabp0);
- }
-
- kfree(v0);
-
- check_pass:
-
- check_rb_tree();
- check_slab_empty();
- assert(slab_allocated() == 0);
- assert(nr_free_pages_store == nr_free_pages());
- assert(kernel_allocated_store == slab_allocated());
-
- cprintf("check_slab() succeeded!\n");
- }
-
|