《操作系统》的实验代码。
25'ten fazla konu seçemezsiniz Konular bir harf veya rakamla başlamalı, kısa çizgiler ('-') içerebilir ve en fazla 35 karakter uzunluğunda olabilir.

684 satır
22 KiB

12 yıl önce
  1. #include <defs.h>
  2. #include <x86.h>
  3. #include <stdio.h>
  4. #include <string.h>
  5. #include <mmu.h>
  6. #include <memlayout.h>
  7. #include <pmm.h>
  8. #include <default_pmm.h>
  9. #include <sync.h>
  10. #include <error.h>
  11. #include <swap.h>
  12. #include <vmm.h>
  13. /* *
  14. * Task State Segment:
  15. *
  16. * The TSS may reside anywhere in memory. A special segment register called
  17. * the Task Register (TR) holds a segment selector that points a valid TSS
  18. * segment descriptor which resides in the GDT. Therefore, to use a TSS
  19. * the following must be done in function gdt_init:
  20. * - create a TSS descriptor entry in GDT
  21. * - add enough information to the TSS in memory as needed
  22. * - load the TR register with a segment selector for that segment
  23. *
  24. * There are several fileds in TSS for specifying the new stack pointer when a
  25. * privilege level change happens. But only the fields SS0 and ESP0 are useful
  26. * in our os kernel.
  27. *
  28. * The field SS0 contains the stack segment selector for CPL = 0, and the ESP0
  29. * contains the new ESP value for CPL = 0. When an interrupt happens in protected
  30. * mode, the x86 CPU will look in the TSS for SS0 and ESP0 and load their value
  31. * into SS and ESP respectively.
  32. * */
  33. static struct taskstate ts = {0};
  34. // virtual address of physicall page array
  35. struct Page *pages;
  36. // amount of physical memory (in pages)
  37. size_t npage = 0;
  38. // virtual address of boot-time page directory
  39. pde_t *boot_pgdir = NULL;
  40. // physical address of boot-time page directory
  41. uintptr_t boot_cr3;
  42. // physical memory management
  43. const struct pmm_manager *pmm_manager;
  44. /* *
  45. * The page directory entry corresponding to the virtual address range
  46. * [VPT, VPT + PTSIZE) points to the page directory itself. Thus, the page
  47. * directory is treated as a page table as well as a page directory.
  48. *
  49. * One result of treating the page directory as a page table is that all PTEs
  50. * can be accessed though a "virtual page table" at virtual address VPT. And the
  51. * PTE for number n is stored in vpt[n].
  52. *
  53. * A second consequence is that the contents of the current page directory will
  54. * always available at virtual address PGADDR(PDX(VPT), PDX(VPT), 0), to which
  55. * vpd is set bellow.
  56. * */
  57. pte_t * const vpt = (pte_t *)VPT;
  58. pde_t * const vpd = (pde_t *)PGADDR(PDX(VPT), PDX(VPT), 0);
  59. /* *
  60. * Global Descriptor Table:
  61. *
  62. * The kernel and user segments are identical (except for the DPL). To load
  63. * the %ss register, the CPL must equal the DPL. Thus, we must duplicate the
  64. * segments for the user and the kernel. Defined as follows:
  65. * - 0x0 : unused (always faults -- for trapping NULL far pointers)
  66. * - 0x8 : kernel code segment
  67. * - 0x10: kernel data segment
  68. * - 0x18: user code segment
  69. * - 0x20: user data segment
  70. * - 0x28: defined for tss, initialized in gdt_init
  71. * */
  72. static struct segdesc gdt[] = {
  73. SEG_NULL,
  74. [SEG_KTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_KERNEL),
  75. [SEG_KDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_KERNEL),
  76. [SEG_UTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_USER),
  77. [SEG_UDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_USER),
  78. [SEG_TSS] = SEG_NULL,
  79. };
  80. static struct pseudodesc gdt_pd = {
  81. sizeof(gdt) - 1, (uintptr_t)gdt
  82. };
  83. static void check_alloc_page(void);
  84. static void check_pgdir(void);
  85. static void check_boot_pgdir(void);
  86. /* *
  87. * lgdt - load the global descriptor table register and reset the
  88. * data/code segement registers for kernel.
  89. * */
  90. static inline void
  91. lgdt(struct pseudodesc *pd) {
  92. asm volatile ("lgdt (%0)" :: "r" (pd));
  93. asm volatile ("movw %%ax, %%gs" :: "a" (USER_DS));
  94. asm volatile ("movw %%ax, %%fs" :: "a" (USER_DS));
  95. asm volatile ("movw %%ax, %%es" :: "a" (KERNEL_DS));
  96. asm volatile ("movw %%ax, %%ds" :: "a" (KERNEL_DS));
  97. asm volatile ("movw %%ax, %%ss" :: "a" (KERNEL_DS));
  98. // reload cs
  99. asm volatile ("ljmp %0, $1f\n 1:\n" :: "i" (KERNEL_CS));
  100. }
  101. /* *
  102. * load_esp0 - change the ESP0 in default task state segment,
  103. * so that we can use different kernel stack when we trap frame
  104. * user to kernel.
  105. * */
  106. void
  107. load_esp0(uintptr_t esp0) {
  108. ts.ts_esp0 = esp0;
  109. }
  110. /* gdt_init - initialize the default GDT and TSS */
  111. static void
  112. gdt_init(void) {
  113. // set boot kernel stack and default SS0
  114. load_esp0((uintptr_t)bootstacktop);
  115. ts.ts_ss0 = KERNEL_DS;
  116. // initialize the TSS filed of the gdt
  117. gdt[SEG_TSS] = SEGTSS(STS_T32A, (uintptr_t)&ts, sizeof(ts), DPL_KERNEL);
  118. // reload all segment registers
  119. lgdt(&gdt_pd);
  120. // load the TSS
  121. ltr(GD_TSS);
  122. }
  123. //init_pmm_manager - initialize a pmm_manager instance
  124. static void
  125. init_pmm_manager(void) {
  126. pmm_manager = &default_pmm_manager;
  127. cprintf("memory management: %s\n", pmm_manager->name);
  128. pmm_manager->init();
  129. }
  130. //init_memmap - call pmm->init_memmap to build Page struct for free memory
  131. static void
  132. init_memmap(struct Page *base, size_t n) {
  133. pmm_manager->init_memmap(base, n);
  134. }
  135. //alloc_pages - call pmm->alloc_pages to allocate a continuous n*PAGESIZE memory
  136. struct Page *
  137. alloc_pages(size_t n) {
  138. struct Page *page=NULL;
  139. bool intr_flag;
  140. while (1)
  141. {
  142. local_intr_save(intr_flag);
  143. {
  144. page = pmm_manager->alloc_pages(n);
  145. }
  146. local_intr_restore(intr_flag);
  147. if (page != NULL || n > 1 || swap_init_ok == 0) break;
  148. extern struct mm_struct *check_mm_struct;
  149. //cprintf("page %x, call swap_out in alloc_pages %d\n",page, n);
  150. swap_out(check_mm_struct, n, 0);
  151. }
  152. //cprintf("n %d,get page %x, No %d in alloc_pages\n",n,page,(page-pages));
  153. return page;
  154. }
  155. //free_pages - call pmm->free_pages to free a continuous n*PAGESIZE memory
  156. void
  157. free_pages(struct Page *base, size_t n) {
  158. bool intr_flag;
  159. local_intr_save(intr_flag);
  160. {
  161. pmm_manager->free_pages(base, n);
  162. }
  163. local_intr_restore(intr_flag);
  164. }
  165. //nr_free_pages - call pmm->nr_free_pages to get the size (nr*PAGESIZE)
  166. //of current free memory
  167. size_t
  168. nr_free_pages(void) {
  169. size_t ret;
  170. bool intr_flag;
  171. local_intr_save(intr_flag);
  172. {
  173. ret = pmm_manager->nr_free_pages();
  174. }
  175. local_intr_restore(intr_flag);
  176. return ret;
  177. }
  178. /* pmm_init - initialize the physical memory management */
  179. static void
  180. page_init(void) {
  181. struct e820map *memmap = (struct e820map *)(0x8000 + KERNBASE);
  182. uint64_t maxpa = 0;
  183. cprintf("e820map:\n");
  184. int i;
  185. for (i = 0; i < memmap->nr_map; i ++) {
  186. uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size;
  187. cprintf(" memory: %08llx, [%08llx, %08llx], type = %d.\n",
  188. memmap->map[i].size, begin, end - 1, memmap->map[i].type);
  189. if (memmap->map[i].type == E820_ARM) {
  190. if (maxpa < end && begin < KMEMSIZE) {
  191. maxpa = end;
  192. }
  193. }
  194. }
  195. if (maxpa > KMEMSIZE) {
  196. maxpa = KMEMSIZE;
  197. }
  198. extern char end[];
  199. npage = maxpa / PGSIZE;
  200. pages = (struct Page *)ROUNDUP((void *)end, PGSIZE);
  201. for (i = 0; i < npage; i ++) {
  202. SetPageReserved(pages + i);
  203. }
  204. uintptr_t freemem = PADDR((uintptr_t)pages + sizeof(struct Page) * npage);
  205. for (i = 0; i < memmap->nr_map; i ++) {
  206. uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size;
  207. if (memmap->map[i].type == E820_ARM) {
  208. if (begin < freemem) {
  209. begin = freemem;
  210. }
  211. if (end > KMEMSIZE) {
  212. end = KMEMSIZE;
  213. }
  214. if (begin < end) {
  215. begin = ROUNDUP(begin, PGSIZE);
  216. end = ROUNDDOWN(end, PGSIZE);
  217. if (begin < end) {
  218. init_memmap(pa2page(begin), (end - begin) / PGSIZE);
  219. }
  220. }
  221. }
  222. }
  223. }
  224. static void
  225. enable_paging(void) {
  226. lcr3(boot_cr3);
  227. // turn on paging
  228. uint32_t cr0 = rcr0();
  229. cr0 |= CR0_PE | CR0_PG | CR0_AM | CR0_WP | CR0_NE | CR0_TS | CR0_EM | CR0_MP;
  230. cr0 &= ~(CR0_TS | CR0_EM);
  231. lcr0(cr0);
  232. }
  233. //boot_map_segment - setup&enable the paging mechanism
  234. // parameters
  235. // la: linear address of this memory need to map (after x86 segment map)
  236. // size: memory size
  237. // pa: physical address of this memory
  238. // perm: permission of this memory
  239. static void
  240. boot_map_segment(pde_t *pgdir, uintptr_t la, size_t size, uintptr_t pa, uint32_t perm) {
  241. assert(PGOFF(la) == PGOFF(pa));
  242. size_t n = ROUNDUP(size + PGOFF(la), PGSIZE) / PGSIZE;
  243. la = ROUNDDOWN(la, PGSIZE);
  244. pa = ROUNDDOWN(pa, PGSIZE);
  245. for (; n > 0; n --, la += PGSIZE, pa += PGSIZE) {
  246. pte_t *ptep = get_pte(pgdir, la, 1);
  247. assert(ptep != NULL);
  248. *ptep = pa | PTE_P | perm;
  249. }
  250. }
  251. //boot_alloc_page - allocate one page using pmm->alloc_pages(1)
  252. // return value: the kernel virtual address of this allocated page
  253. //note: this function is used to get the memory for PDT(Page Directory Table)&PT(Page Table)
  254. static void *
  255. boot_alloc_page(void) {
  256. struct Page *p = alloc_page();
  257. if (p == NULL) {
  258. panic("boot_alloc_page failed.\n");
  259. }
  260. return page2kva(p);
  261. }
  262. //pmm_init - setup a pmm to manage physical memory, build PDT&PT to setup paging mechanism
  263. // - check the correctness of pmm & paging mechanism, print PDT&PT
  264. void
  265. pmm_init(void) {
  266. //We need to alloc/free the physical memory (granularity is 4KB or other size).
  267. //So a framework of physical memory manager (struct pmm_manager)is defined in pmm.h
  268. //First we should init a physical memory manager(pmm) based on the framework.
  269. //Then pmm can alloc/free the physical memory.
  270. //Now the first_fit/best_fit/worst_fit/buddy_system pmm are available.
  271. init_pmm_manager();
  272. // detect physical memory space, reserve already used memory,
  273. // then use pmm->init_memmap to create free page list
  274. page_init();
  275. //use pmm->check to verify the correctness of the alloc/free function in a pmm
  276. check_alloc_page();
  277. // create boot_pgdir, an initial page directory(Page Directory Table, PDT)
  278. boot_pgdir = boot_alloc_page();
  279. memset(boot_pgdir, 0, PGSIZE);
  280. boot_cr3 = PADDR(boot_pgdir);
  281. check_pgdir();
  282. static_assert(KERNBASE % PTSIZE == 0 && KERNTOP % PTSIZE == 0);
  283. // recursively insert boot_pgdir in itself
  284. // to form a virtual page table at virtual address VPT
  285. boot_pgdir[PDX(VPT)] = PADDR(boot_pgdir) | PTE_P | PTE_W;
  286. // map all physical memory to linear memory with base linear addr KERNBASE
  287. //linear_addr KERNBASE~KERNBASE+KMEMSIZE = phy_addr 0~KMEMSIZE
  288. //But shouldn't use this map until enable_paging() & gdt_init() finished.
  289. boot_map_segment(boot_pgdir, KERNBASE, KMEMSIZE, 0, PTE_W);
  290. //temporary map:
  291. //virtual_addr 3G~3G+4M = linear_addr 0~4M = linear_addr 3G~3G+4M = phy_addr 0~4M
  292. boot_pgdir[0] = boot_pgdir[PDX(KERNBASE)];
  293. enable_paging();
  294. //reload gdt(third time,the last time) to map all physical memory
  295. //virtual_addr 0~4G=liear_addr 0~4G
  296. //then set kernel stack(ss:esp) in TSS, setup TSS in gdt, load TSS
  297. gdt_init();
  298. //disable the map of virtual_addr 0~4M
  299. boot_pgdir[0] = 0;
  300. //now the basic virtual memory map(see memalyout.h) is established.
  301. //check the correctness of the basic virtual memory map.
  302. check_boot_pgdir();
  303. print_pgdir();
  304. }
  305. //get_pte - get pte and return the kernel virtual address of this pte for la
  306. // - if the PT contians this pte didn't exist, alloc a page for PT
  307. // parameter:
  308. // pgdir: the kernel virtual base address of PDT
  309. // la: the linear address need to map
  310. // create: a logical value to decide if alloc a page for PT
  311. // return vaule: the kernel virtual address of this pte
  312. pte_t *
  313. get_pte(pde_t *pgdir, uintptr_t la, bool create) {
  314. /* LAB2 EXERCISE 2: YOUR CODE
  315. *
  316. * If you need to visit a physical address, please use KADDR()
  317. * please read pmm.h for useful macros
  318. *
  319. * Maybe you want help comment, BELOW comments can help you finish the code
  320. *
  321. * Some Useful MACROs and DEFINEs, you can use them in below implementation.
  322. * MACROs or Functions:
  323. * PDX(la) = the index of page directory entry of VIRTUAL ADDRESS la.
  324. * KADDR(pa) : takes a physical address and returns the corresponding kernel virtual address.
  325. * set_page_ref(page,1) : means the page be referenced by one time
  326. * page2pa(page): get the physical address of memory which this (struct Page *) page manages
  327. * struct Page * alloc_page() : allocation a page
  328. * memset(void *s, char c, size_t n) : sets the first n bytes of the memory area pointed by s
  329. * to the specified value c.
  330. * DEFINEs:
  331. * PTE_P 0x001 // page table/directory entry flags bit : Present
  332. * PTE_W 0x002 // page table/directory entry flags bit : Writeable
  333. * PTE_U 0x004 // page table/directory entry flags bit : User can access
  334. */
  335. #if 0
  336. pde_t *pdep = NULL; // (1) find page directory entry
  337. if (0) { // (2) check if entry is not present
  338. // (3) check if creating is needed, then alloc page for page table
  339. // CAUTION: this page is used for page table, not for common data page
  340. // (4) set page reference
  341. uintptr_t pa = 0; // (5) get linear address of page
  342. // (6) clear page content using memset
  343. // (7) set page directory entry's permission
  344. }
  345. return NULL; // (8) return page table entry
  346. #endif
  347. }
  348. //get_page - get related Page struct for linear address la using PDT pgdir
  349. struct Page *
  350. get_page(pde_t *pgdir, uintptr_t la, pte_t **ptep_store) {
  351. pte_t *ptep = get_pte(pgdir, la, 0);
  352. if (ptep_store != NULL) {
  353. *ptep_store = ptep;
  354. }
  355. if (ptep != NULL && *ptep & PTE_P) {
  356. return pa2page(*ptep);
  357. }
  358. return NULL;
  359. }
  360. //page_remove_pte - free an Page sturct which is related linear address la
  361. // - and clean(invalidate) pte which is related linear address la
  362. //note: PT is changed, so the TLB need to be invalidate
  363. static inline void
  364. page_remove_pte(pde_t *pgdir, uintptr_t la, pte_t *ptep) {
  365. /* LAB2 EXERCISE 3: YOUR CODE
  366. *
  367. * Please check if ptep is valid, and tlb must be manually updated if mapping is updated
  368. *
  369. * Maybe you want help comment, BELOW comments can help you finish the code
  370. *
  371. * Some Useful MACROs and DEFINEs, you can use them in below implementation.
  372. * MACROs or Functions:
  373. * struct Page *page pte2page(*ptep): get the according page from the value of a ptep
  374. * free_page : free a page
  375. * page_ref_dec(page) : decrease page->ref. NOTICE: ff page->ref == 0 , then this page should be free.
  376. * tlb_invalidate(pde_t *pgdir, uintptr_t la) : Invalidate a TLB entry, but only if the page tables being
  377. * edited are the ones currently in use by the processor.
  378. * DEFINEs:
  379. * PTE_P 0x001 // page table/directory entry flags bit : Present
  380. */
  381. #if 0
  382. if (0) { //(1) check if page directory is present
  383. struct Page *page = NULL; //(2) find corresponding page to pte
  384. //(3) decrease page reference
  385. //(4) and free this page when page reference reachs 0
  386. //(5) clear second page table entry
  387. //(6) flush tlb
  388. }
  389. #endif
  390. }
  391. //page_remove - free an Page which is related linear address la and has an validated pte
  392. void
  393. page_remove(pde_t *pgdir, uintptr_t la) {
  394. pte_t *ptep = get_pte(pgdir, la, 0);
  395. if (ptep != NULL) {
  396. page_remove_pte(pgdir, la, ptep);
  397. }
  398. }
  399. //page_insert - build the map of phy addr of an Page with the linear addr la
  400. // paramemters:
  401. // pgdir: the kernel virtual base address of PDT
  402. // page: the Page which need to map
  403. // la: the linear address need to map
  404. // perm: the permission of this Page which is setted in related pte
  405. // return value: always 0
  406. //note: PT is changed, so the TLB need to be invalidate
  407. int
  408. page_insert(pde_t *pgdir, struct Page *page, uintptr_t la, uint32_t perm) {
  409. pte_t *ptep = get_pte(pgdir, la, 1);
  410. if (ptep == NULL) {
  411. return -E_NO_MEM;
  412. }
  413. page_ref_inc(page);
  414. if (*ptep & PTE_P) {
  415. struct Page *p = pte2page(*ptep);
  416. if (p == page) {
  417. page_ref_dec(page);
  418. }
  419. else {
  420. page_remove_pte(pgdir, la, ptep);
  421. }
  422. }
  423. *ptep = page2pa(page) | PTE_P | perm;
  424. tlb_invalidate(pgdir, la);
  425. return 0;
  426. }
  427. // invalidate a TLB entry, but only if the page tables being
  428. // edited are the ones currently in use by the processor.
  429. void
  430. tlb_invalidate(pde_t *pgdir, uintptr_t la) {
  431. if (rcr3() == PADDR(pgdir)) {
  432. invlpg((void *)la);
  433. }
  434. }
  435. // pgdir_alloc_page - call alloc_page & page_insert functions to
  436. // - allocate a page size memory & setup an addr map
  437. // - pa<->la with linear address la and the PDT pgdir
  438. struct Page *
  439. pgdir_alloc_page(pde_t *pgdir, uintptr_t la, uint32_t perm) {
  440. struct Page *page = alloc_page();
  441. if (page != NULL) {
  442. if (page_insert(pgdir, page, la, perm) != 0) {
  443. free_page(page);
  444. return NULL;
  445. }
  446. if (swap_init_ok){
  447. swap_map_swappable(check_mm_struct, la, page, 0);
  448. page->pra_vaddr=la;
  449. assert(page_ref(page) == 1);
  450. //cprintf("get No. %d page: pra_vaddr %x, pra_link.prev %x, pra_link_next %x in pgdir_alloc_page\n", (page-pages), page->pra_vaddr,page->pra_page_link.prev, page->pra_page_link.next);
  451. }
  452. }
  453. return page;
  454. }
  455. static void
  456. check_alloc_page(void) {
  457. pmm_manager->check();
  458. cprintf("check_alloc_page() succeeded!\n");
  459. }
  460. static void
  461. check_pgdir(void) {
  462. assert(npage <= KMEMSIZE / PGSIZE);
  463. assert(boot_pgdir != NULL && (uint32_t)PGOFF(boot_pgdir) == 0);
  464. assert(get_page(boot_pgdir, 0x0, NULL) == NULL);
  465. struct Page *p1, *p2;
  466. p1 = alloc_page();
  467. assert(page_insert(boot_pgdir, p1, 0x0, 0) == 0);
  468. pte_t *ptep;
  469. assert((ptep = get_pte(boot_pgdir, 0x0, 0)) != NULL);
  470. assert(pa2page(*ptep) == p1);
  471. assert(page_ref(p1) == 1);
  472. ptep = &((pte_t *)KADDR(PDE_ADDR(boot_pgdir[0])))[1];
  473. assert(get_pte(boot_pgdir, PGSIZE, 0) == ptep);
  474. p2 = alloc_page();
  475. assert(page_insert(boot_pgdir, p2, PGSIZE, PTE_U | PTE_W) == 0);
  476. assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL);
  477. assert(*ptep & PTE_U);
  478. assert(*ptep & PTE_W);
  479. assert(boot_pgdir[0] & PTE_U);
  480. assert(page_ref(p2) == 1);
  481. assert(page_insert(boot_pgdir, p1, PGSIZE, 0) == 0);
  482. assert(page_ref(p1) == 2);
  483. assert(page_ref(p2) == 0);
  484. assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL);
  485. assert(pa2page(*ptep) == p1);
  486. assert((*ptep & PTE_U) == 0);
  487. page_remove(boot_pgdir, 0x0);
  488. assert(page_ref(p1) == 1);
  489. assert(page_ref(p2) == 0);
  490. page_remove(boot_pgdir, PGSIZE);
  491. assert(page_ref(p1) == 0);
  492. assert(page_ref(p2) == 0);
  493. assert(page_ref(pa2page(boot_pgdir[0])) == 1);
  494. free_page(pa2page(boot_pgdir[0]));
  495. boot_pgdir[0] = 0;
  496. cprintf("check_pgdir() succeeded!\n");
  497. }
  498. static void
  499. check_boot_pgdir(void) {
  500. pte_t *ptep;
  501. int i;
  502. for (i = 0; i < npage; i += PGSIZE) {
  503. assert((ptep = get_pte(boot_pgdir, (uintptr_t)KADDR(i), 0)) != NULL);
  504. assert(PTE_ADDR(*ptep) == i);
  505. }
  506. assert(PDE_ADDR(boot_pgdir[PDX(VPT)]) == PADDR(boot_pgdir));
  507. assert(boot_pgdir[0] == 0);
  508. struct Page *p;
  509. p = alloc_page();
  510. assert(page_insert(boot_pgdir, p, 0x100, PTE_W) == 0);
  511. assert(page_ref(p) == 1);
  512. assert(page_insert(boot_pgdir, p, 0x100 + PGSIZE, PTE_W) == 0);
  513. assert(page_ref(p) == 2);
  514. const char *str = "ucore: Hello world!!";
  515. strcpy((void *)0x100, str);
  516. assert(strcmp((void *)0x100, (void *)(0x100 + PGSIZE)) == 0);
  517. *(char *)(page2kva(p) + 0x100) = '\0';
  518. assert(strlen((const char *)0x100) == 0);
  519. free_page(p);
  520. free_page(pa2page(PDE_ADDR(boot_pgdir[0])));
  521. boot_pgdir[0] = 0;
  522. cprintf("check_boot_pgdir() succeeded!\n");
  523. }
  524. //perm2str - use string 'u,r,w,-' to present the permission
  525. static const char *
  526. perm2str(int perm) {
  527. static char str[4];
  528. str[0] = (perm & PTE_U) ? 'u' : '-';
  529. str[1] = 'r';
  530. str[2] = (perm & PTE_W) ? 'w' : '-';
  531. str[3] = '\0';
  532. return str;
  533. }
  534. //get_pgtable_items - In [left, right] range of PDT or PT, find a continuous linear addr space
  535. // - (left_store*X_SIZE~right_store*X_SIZE) for PDT or PT
  536. // - X_SIZE=PTSIZE=4M, if PDT; X_SIZE=PGSIZE=4K, if PT
  537. // paramemters:
  538. // left: no use ???
  539. // right: the high side of table's range
  540. // start: the low side of table's range
  541. // table: the beginning addr of table
  542. // left_store: the pointer of the high side of table's next range
  543. // right_store: the pointer of the low side of table's next range
  544. // return value: 0 - not a invalid item range, perm - a valid item range with perm permission
  545. static int
  546. get_pgtable_items(size_t left, size_t right, size_t start, uintptr_t *table, size_t *left_store, size_t *right_store) {
  547. if (start >= right) {
  548. return 0;
  549. }
  550. while (start < right && !(table[start] & PTE_P)) {
  551. start ++;
  552. }
  553. if (start < right) {
  554. if (left_store != NULL) {
  555. *left_store = start;
  556. }
  557. int perm = (table[start ++] & PTE_USER);
  558. while (start < right && (table[start] & PTE_USER) == perm) {
  559. start ++;
  560. }
  561. if (right_store != NULL) {
  562. *right_store = start;
  563. }
  564. return perm;
  565. }
  566. return 0;
  567. }
  568. //print_pgdir - print the PDT&PT
  569. void
  570. print_pgdir(void) {
  571. cprintf("-------------------- BEGIN --------------------\n");
  572. size_t left, right = 0, perm;
  573. while ((perm = get_pgtable_items(0, NPDEENTRY, right, vpd, &left, &right)) != 0) {
  574. cprintf("PDE(%03x) %08x-%08x %08x %s\n", right - left,
  575. left * PTSIZE, right * PTSIZE, (right - left) * PTSIZE, perm2str(perm));
  576. size_t l, r = left * NPTEENTRY;
  577. while ((perm = get_pgtable_items(left * NPTEENTRY, right * NPTEENTRY, r, vpt, &l, &r)) != 0) {
  578. cprintf(" |-- PTE(%05x) %08x-%08x %08x %s\n", r - l,
  579. l * PGSIZE, r * PGSIZE, (r - l) * PGSIZE, perm2str(perm));
  580. }
  581. }
  582. cprintf("--------------------- END ---------------------\n");
  583. }
  584. void *
  585. kmalloc(size_t n) {
  586. void * ptr=NULL;
  587. struct Page *base=NULL;
  588. assert(n > 0 && n < 1024*0124);
  589. int num_pages=(n+PGSIZE-1)/PGSIZE;
  590. base = alloc_pages(num_pages);
  591. assert(base != NULL);
  592. ptr=page2kva(base);
  593. return ptr;
  594. }
  595. void
  596. kfree(void *ptr, size_t n) {
  597. assert(n > 0 && n < 1024*0124);
  598. assert(ptr != NULL);
  599. struct Page *base=NULL;
  600. int num_pages=(n+PGSIZE-1)/PGSIZE;
  601. base = kva2page(ptr);
  602. free_pages(base, num_pages);
  603. }