|
|
- #include <defs.h>
- #include <x86.h>
- #include <stdio.h>
- #include <string.h>
- #include <mmu.h>
- #include <memlayout.h>
- #include <pmm.h>
- #include <default_pmm.h>
- #include <sync.h>
- #include <error.h>
- #include <swap.h>
- #include <vmm.h>
-
- /* *
- * Task State Segment:
- *
- * The TSS may reside anywhere in memory. A special segment register called
- * the Task Register (TR) holds a segment selector that points a valid TSS
- * segment descriptor which resides in the GDT. Therefore, to use a TSS
- * the following must be done in function gdt_init:
- * - create a TSS descriptor entry in GDT
- * - add enough information to the TSS in memory as needed
- * - load the TR register with a segment selector for that segment
- *
- * There are several fileds in TSS for specifying the new stack pointer when a
- * privilege level change happens. But only the fields SS0 and ESP0 are useful
- * in our os kernel.
- *
- * The field SS0 contains the stack segment selector for CPL = 0, and the ESP0
- * contains the new ESP value for CPL = 0. When an interrupt happens in protected
- * mode, the x86 CPU will look in the TSS for SS0 and ESP0 and load their value
- * into SS and ESP respectively.
- * */
- static struct taskstate ts = {0};
-
- // virtual address of physicall page array
- struct Page *pages;
- // amount of physical memory (in pages)
- size_t npage = 0;
-
- // virtual address of boot-time page directory
- pde_t *boot_pgdir = NULL;
- // physical address of boot-time page directory
- uintptr_t boot_cr3;
-
- // physical memory management
- const struct pmm_manager *pmm_manager;
-
- /* *
- * The page directory entry corresponding to the virtual address range
- * [VPT, VPT + PTSIZE) points to the page directory itself. Thus, the page
- * directory is treated as a page table as well as a page directory.
- *
- * One result of treating the page directory as a page table is that all PTEs
- * can be accessed though a "virtual page table" at virtual address VPT. And the
- * PTE for number n is stored in vpt[n].
- *
- * A second consequence is that the contents of the current page directory will
- * always available at virtual address PGADDR(PDX(VPT), PDX(VPT), 0), to which
- * vpd is set bellow.
- * */
- pte_t * const vpt = (pte_t *)VPT;
- pde_t * const vpd = (pde_t *)PGADDR(PDX(VPT), PDX(VPT), 0);
-
- /* *
- * Global Descriptor Table:
- *
- * The kernel and user segments are identical (except for the DPL). To load
- * the %ss register, the CPL must equal the DPL. Thus, we must duplicate the
- * segments for the user and the kernel. Defined as follows:
- * - 0x0 : unused (always faults -- for trapping NULL far pointers)
- * - 0x8 : kernel code segment
- * - 0x10: kernel data segment
- * - 0x18: user code segment
- * - 0x20: user data segment
- * - 0x28: defined for tss, initialized in gdt_init
- * */
- static struct segdesc gdt[] = {
- SEG_NULL,
- [SEG_KTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_KERNEL),
- [SEG_KDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_KERNEL),
- [SEG_UTEXT] = SEG(STA_X | STA_R, 0x0, 0xFFFFFFFF, DPL_USER),
- [SEG_UDATA] = SEG(STA_W, 0x0, 0xFFFFFFFF, DPL_USER),
- [SEG_TSS] = SEG_NULL,
- };
-
- static struct pseudodesc gdt_pd = {
- sizeof(gdt) - 1, (uintptr_t)gdt
- };
-
- static void check_alloc_page(void);
- static void check_pgdir(void);
- static void check_boot_pgdir(void);
-
- /* *
- * lgdt - load the global descriptor table register and reset the
- * data/code segement registers for kernel.
- * */
- static inline void
- lgdt(struct pseudodesc *pd) {
- asm volatile ("lgdt (%0)" :: "r" (pd));
- asm volatile ("movw %%ax, %%gs" :: "a" (USER_DS));
- asm volatile ("movw %%ax, %%fs" :: "a" (USER_DS));
- asm volatile ("movw %%ax, %%es" :: "a" (KERNEL_DS));
- asm volatile ("movw %%ax, %%ds" :: "a" (KERNEL_DS));
- asm volatile ("movw %%ax, %%ss" :: "a" (KERNEL_DS));
- // reload cs
- asm volatile ("ljmp %0, $1f\n 1:\n" :: "i" (KERNEL_CS));
- }
-
- /* *
- * load_esp0 - change the ESP0 in default task state segment,
- * so that we can use different kernel stack when we trap frame
- * user to kernel.
- * */
- void
- load_esp0(uintptr_t esp0) {
- ts.ts_esp0 = esp0;
- }
-
- /* gdt_init - initialize the default GDT and TSS */
- static void
- gdt_init(void) {
- // set boot kernel stack and default SS0
- load_esp0((uintptr_t)bootstacktop);
- ts.ts_ss0 = KERNEL_DS;
-
- // initialize the TSS filed of the gdt
- gdt[SEG_TSS] = SEGTSS(STS_T32A, (uintptr_t)&ts, sizeof(ts), DPL_KERNEL);
-
- // reload all segment registers
- lgdt(&gdt_pd);
-
- // load the TSS
- ltr(GD_TSS);
- }
-
- //init_pmm_manager - initialize a pmm_manager instance
- static void
- init_pmm_manager(void) {
- pmm_manager = &default_pmm_manager;
- cprintf("memory management: %s\n", pmm_manager->name);
- pmm_manager->init();
- }
-
- //init_memmap - call pmm->init_memmap to build Page struct for free memory
- static void
- init_memmap(struct Page *base, size_t n) {
- pmm_manager->init_memmap(base, n);
- }
-
- //alloc_pages - call pmm->alloc_pages to allocate a continuous n*PAGESIZE memory
- struct Page *
- alloc_pages(size_t n) {
- struct Page *page=NULL;
- bool intr_flag;
-
- while (1)
- {
- local_intr_save(intr_flag);
- {
- page = pmm_manager->alloc_pages(n);
- }
- local_intr_restore(intr_flag);
-
- if (page != NULL || n > 1 || swap_init_ok == 0) break;
-
- extern struct mm_struct *check_mm_struct;
- //cprintf("page %x, call swap_out in alloc_pages %d\n",page, n);
- swap_out(check_mm_struct, n, 0);
- }
- //cprintf("n %d,get page %x, No %d in alloc_pages\n",n,page,(page-pages));
- return page;
- }
-
- //free_pages - call pmm->free_pages to free a continuous n*PAGESIZE memory
- void
- free_pages(struct Page *base, size_t n) {
- bool intr_flag;
- local_intr_save(intr_flag);
- {
- pmm_manager->free_pages(base, n);
- }
- local_intr_restore(intr_flag);
- }
-
- //nr_free_pages - call pmm->nr_free_pages to get the size (nr*PAGESIZE)
- //of current free memory
- size_t
- nr_free_pages(void) {
- size_t ret;
- bool intr_flag;
- local_intr_save(intr_flag);
- {
- ret = pmm_manager->nr_free_pages();
- }
- local_intr_restore(intr_flag);
- return ret;
- }
-
- /* pmm_init - initialize the physical memory management */
- static void
- page_init(void) {
- struct e820map *memmap = (struct e820map *)(0x8000 + KERNBASE);
- uint64_t maxpa = 0;
-
- cprintf("e820map:\n");
- int i;
- for (i = 0; i < memmap->nr_map; i ++) {
- uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size;
- cprintf(" memory: %08llx, [%08llx, %08llx], type = %d.\n",
- memmap->map[i].size, begin, end - 1, memmap->map[i].type);
- if (memmap->map[i].type == E820_ARM) {
- if (maxpa < end && begin < KMEMSIZE) {
- maxpa = end;
- }
- }
- }
- if (maxpa > KMEMSIZE) {
- maxpa = KMEMSIZE;
- }
-
- extern char end[];
-
- npage = maxpa / PGSIZE;
- pages = (struct Page *)ROUNDUP((void *)end, PGSIZE);
-
- for (i = 0; i < npage; i ++) {
- SetPageReserved(pages + i);
- }
-
- uintptr_t freemem = PADDR((uintptr_t)pages + sizeof(struct Page) * npage);
-
- for (i = 0; i < memmap->nr_map; i ++) {
- uint64_t begin = memmap->map[i].addr, end = begin + memmap->map[i].size;
- if (memmap->map[i].type == E820_ARM) {
- if (begin < freemem) {
- begin = freemem;
- }
- if (end > KMEMSIZE) {
- end = KMEMSIZE;
- }
- if (begin < end) {
- begin = ROUNDUP(begin, PGSIZE);
- end = ROUNDDOWN(end, PGSIZE);
- if (begin < end) {
- init_memmap(pa2page(begin), (end - begin) / PGSIZE);
- }
- }
- }
- }
- }
-
- static void
- enable_paging(void) {
- lcr3(boot_cr3);
-
- // turn on paging
- uint32_t cr0 = rcr0();
- cr0 |= CR0_PE | CR0_PG | CR0_AM | CR0_WP | CR0_NE | CR0_TS | CR0_EM | CR0_MP;
- cr0 &= ~(CR0_TS | CR0_EM);
- lcr0(cr0);
- }
-
- //boot_map_segment - setup&enable the paging mechanism
- // parameters
- // la: linear address of this memory need to map (after x86 segment map)
- // size: memory size
- // pa: physical address of this memory
- // perm: permission of this memory
- static void
- boot_map_segment(pde_t *pgdir, uintptr_t la, size_t size, uintptr_t pa, uint32_t perm) {
- assert(PGOFF(la) == PGOFF(pa));
- size_t n = ROUNDUP(size + PGOFF(la), PGSIZE) / PGSIZE;
- la = ROUNDDOWN(la, PGSIZE);
- pa = ROUNDDOWN(pa, PGSIZE);
- for (; n > 0; n --, la += PGSIZE, pa += PGSIZE) {
- pte_t *ptep = get_pte(pgdir, la, 1);
- assert(ptep != NULL);
- *ptep = pa | PTE_P | perm;
- }
- }
-
- //boot_alloc_page - allocate one page using pmm->alloc_pages(1)
- // return value: the kernel virtual address of this allocated page
- //note: this function is used to get the memory for PDT(Page Directory Table)&PT(Page Table)
- static void *
- boot_alloc_page(void) {
- struct Page *p = alloc_page();
- if (p == NULL) {
- panic("boot_alloc_page failed.\n");
- }
- return page2kva(p);
- }
-
- //pmm_init - setup a pmm to manage physical memory, build PDT&PT to setup paging mechanism
- // - check the correctness of pmm & paging mechanism, print PDT&PT
- void
- pmm_init(void) {
- //We need to alloc/free the physical memory (granularity is 4KB or other size).
- //So a framework of physical memory manager (struct pmm_manager)is defined in pmm.h
- //First we should init a physical memory manager(pmm) based on the framework.
- //Then pmm can alloc/free the physical memory.
- //Now the first_fit/best_fit/worst_fit/buddy_system pmm are available.
- init_pmm_manager();
-
- // detect physical memory space, reserve already used memory,
- // then use pmm->init_memmap to create free page list
- page_init();
-
- //use pmm->check to verify the correctness of the alloc/free function in a pmm
- check_alloc_page();
-
- // create boot_pgdir, an initial page directory(Page Directory Table, PDT)
- boot_pgdir = boot_alloc_page();
- memset(boot_pgdir, 0, PGSIZE);
- boot_cr3 = PADDR(boot_pgdir);
-
- check_pgdir();
-
- static_assert(KERNBASE % PTSIZE == 0 && KERNTOP % PTSIZE == 0);
-
- // recursively insert boot_pgdir in itself
- // to form a virtual page table at virtual address VPT
- boot_pgdir[PDX(VPT)] = PADDR(boot_pgdir) | PTE_P | PTE_W;
-
- // map all physical memory to linear memory with base linear addr KERNBASE
- //linear_addr KERNBASE~KERNBASE+KMEMSIZE = phy_addr 0~KMEMSIZE
- //But shouldn't use this map until enable_paging() & gdt_init() finished.
- boot_map_segment(boot_pgdir, KERNBASE, KMEMSIZE, 0, PTE_W);
-
- //temporary map:
- //virtual_addr 3G~3G+4M = linear_addr 0~4M = linear_addr 3G~3G+4M = phy_addr 0~4M
- boot_pgdir[0] = boot_pgdir[PDX(KERNBASE)];
-
- enable_paging();
-
- //reload gdt(third time,the last time) to map all physical memory
- //virtual_addr 0~4G=liear_addr 0~4G
- //then set kernel stack(ss:esp) in TSS, setup TSS in gdt, load TSS
- gdt_init();
-
- //disable the map of virtual_addr 0~4M
- boot_pgdir[0] = 0;
-
- //now the basic virtual memory map(see memalyout.h) is established.
- //check the correctness of the basic virtual memory map.
- check_boot_pgdir();
-
- print_pgdir();
-
- }
-
- //get_pte - get pte and return the kernel virtual address of this pte for la
- // - if the PT contians this pte didn't exist, alloc a page for PT
- // parameter:
- // pgdir: the kernel virtual base address of PDT
- // la: the linear address need to map
- // create: a logical value to decide if alloc a page for PT
- // return vaule: the kernel virtual address of this pte
- pte_t *
- get_pte(pde_t *pgdir, uintptr_t la, bool create) {
- /* LAB2 EXERCISE 2: YOUR CODE
- *
- * If you need to visit a physical address, please use KADDR()
- * please read pmm.h for useful macros
- *
- * Maybe you want help comment, BELOW comments can help you finish the code
- *
- * Some Useful MACROs and DEFINEs, you can use them in below implementation.
- * MACROs or Functions:
- * PDX(la) = the index of page directory entry of VIRTUAL ADDRESS la.
- * KADDR(pa) : takes a physical address and returns the corresponding kernel virtual address.
- * set_page_ref(page,1) : means the page be referenced by one time
- * page2pa(page): get the physical address of memory which this (struct Page *) page manages
- * struct Page * alloc_page() : allocation a page
- * memset(void *s, char c, size_t n) : sets the first n bytes of the memory area pointed by s
- * to the specified value c.
- * DEFINEs:
- * PTE_P 0x001 // page table/directory entry flags bit : Present
- * PTE_W 0x002 // page table/directory entry flags bit : Writeable
- * PTE_U 0x004 // page table/directory entry flags bit : User can access
- */
- #if 0
- pde_t *pdep = NULL; // (1) find page directory entry
- if (0) { // (2) check if entry is not present
- // (3) check if creating is needed, then alloc page for page table
- // CAUTION: this page is used for page table, not for common data page
- // (4) set page reference
- uintptr_t pa = 0; // (5) get linear address of page
- // (6) clear page content using memset
- // (7) set page directory entry's permission
- }
- return NULL; // (8) return page table entry
- #endif
- }
-
- //get_page - get related Page struct for linear address la using PDT pgdir
- struct Page *
- get_page(pde_t *pgdir, uintptr_t la, pte_t **ptep_store) {
- pte_t *ptep = get_pte(pgdir, la, 0);
- if (ptep_store != NULL) {
- *ptep_store = ptep;
- }
- if (ptep != NULL && *ptep & PTE_P) {
- return pa2page(*ptep);
- }
- return NULL;
- }
-
- //page_remove_pte - free an Page sturct which is related linear address la
- // - and clean(invalidate) pte which is related linear address la
- //note: PT is changed, so the TLB need to be invalidate
- static inline void
- page_remove_pte(pde_t *pgdir, uintptr_t la, pte_t *ptep) {
- /* LAB2 EXERCISE 3: YOUR CODE
- *
- * Please check if ptep is valid, and tlb must be manually updated if mapping is updated
- *
- * Maybe you want help comment, BELOW comments can help you finish the code
- *
- * Some Useful MACROs and DEFINEs, you can use them in below implementation.
- * MACROs or Functions:
- * struct Page *page pte2page(*ptep): get the according page from the value of a ptep
- * free_page : free a page
- * page_ref_dec(page) : decrease page->ref. NOTICE: ff page->ref == 0 , then this page should be free.
- * tlb_invalidate(pde_t *pgdir, uintptr_t la) : Invalidate a TLB entry, but only if the page tables being
- * edited are the ones currently in use by the processor.
- * DEFINEs:
- * PTE_P 0x001 // page table/directory entry flags bit : Present
- */
- #if 0
- if (0) { //(1) check if page directory is present
- struct Page *page = NULL; //(2) find corresponding page to pte
- //(3) decrease page reference
- //(4) and free this page when page reference reachs 0
- //(5) clear second page table entry
- //(6) flush tlb
- }
- #endif
- }
-
- //page_remove - free an Page which is related linear address la and has an validated pte
- void
- page_remove(pde_t *pgdir, uintptr_t la) {
- pte_t *ptep = get_pte(pgdir, la, 0);
- if (ptep != NULL) {
- page_remove_pte(pgdir, la, ptep);
- }
- }
-
- //page_insert - build the map of phy addr of an Page with the linear addr la
- // paramemters:
- // pgdir: the kernel virtual base address of PDT
- // page: the Page which need to map
- // la: the linear address need to map
- // perm: the permission of this Page which is setted in related pte
- // return value: always 0
- //note: PT is changed, so the TLB need to be invalidate
- int
- page_insert(pde_t *pgdir, struct Page *page, uintptr_t la, uint32_t perm) {
- pte_t *ptep = get_pte(pgdir, la, 1);
- if (ptep == NULL) {
- return -E_NO_MEM;
- }
- page_ref_inc(page);
- if (*ptep & PTE_P) {
- struct Page *p = pte2page(*ptep);
- if (p == page) {
- page_ref_dec(page);
- }
- else {
- page_remove_pte(pgdir, la, ptep);
- }
- }
- *ptep = page2pa(page) | PTE_P | perm;
- tlb_invalidate(pgdir, la);
- return 0;
- }
-
- // invalidate a TLB entry, but only if the page tables being
- // edited are the ones currently in use by the processor.
- void
- tlb_invalidate(pde_t *pgdir, uintptr_t la) {
- if (rcr3() == PADDR(pgdir)) {
- invlpg((void *)la);
- }
- }
-
- // pgdir_alloc_page - call alloc_page & page_insert functions to
- // - allocate a page size memory & setup an addr map
- // - pa<->la with linear address la and the PDT pgdir
- struct Page *
- pgdir_alloc_page(pde_t *pgdir, uintptr_t la, uint32_t perm) {
- struct Page *page = alloc_page();
- if (page != NULL) {
- if (page_insert(pgdir, page, la, perm) != 0) {
- free_page(page);
- return NULL;
- }
- if (swap_init_ok){
- swap_map_swappable(check_mm_struct, la, page, 0);
- page->pra_vaddr=la;
- assert(page_ref(page) == 1);
- //cprintf("get No. %d page: pra_vaddr %x, pra_link.prev %x, pra_link_next %x in pgdir_alloc_page\n", (page-pages), page->pra_vaddr,page->pra_page_link.prev, page->pra_page_link.next);
- }
-
- }
-
- return page;
- }
-
- static void
- check_alloc_page(void) {
- pmm_manager->check();
- cprintf("check_alloc_page() succeeded!\n");
- }
-
- static void
- check_pgdir(void) {
- assert(npage <= KMEMSIZE / PGSIZE);
- assert(boot_pgdir != NULL && (uint32_t)PGOFF(boot_pgdir) == 0);
- assert(get_page(boot_pgdir, 0x0, NULL) == NULL);
-
- struct Page *p1, *p2;
- p1 = alloc_page();
- assert(page_insert(boot_pgdir, p1, 0x0, 0) == 0);
-
- pte_t *ptep;
- assert((ptep = get_pte(boot_pgdir, 0x0, 0)) != NULL);
- assert(pa2page(*ptep) == p1);
- assert(page_ref(p1) == 1);
-
- ptep = &((pte_t *)KADDR(PDE_ADDR(boot_pgdir[0])))[1];
- assert(get_pte(boot_pgdir, PGSIZE, 0) == ptep);
-
- p2 = alloc_page();
- assert(page_insert(boot_pgdir, p2, PGSIZE, PTE_U | PTE_W) == 0);
- assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL);
- assert(*ptep & PTE_U);
- assert(*ptep & PTE_W);
- assert(boot_pgdir[0] & PTE_U);
- assert(page_ref(p2) == 1);
-
- assert(page_insert(boot_pgdir, p1, PGSIZE, 0) == 0);
- assert(page_ref(p1) == 2);
- assert(page_ref(p2) == 0);
- assert((ptep = get_pte(boot_pgdir, PGSIZE, 0)) != NULL);
- assert(pa2page(*ptep) == p1);
- assert((*ptep & PTE_U) == 0);
-
- page_remove(boot_pgdir, 0x0);
- assert(page_ref(p1) == 1);
- assert(page_ref(p2) == 0);
-
- page_remove(boot_pgdir, PGSIZE);
- assert(page_ref(p1) == 0);
- assert(page_ref(p2) == 0);
-
- assert(page_ref(pa2page(boot_pgdir[0])) == 1);
- free_page(pa2page(boot_pgdir[0]));
- boot_pgdir[0] = 0;
-
- cprintf("check_pgdir() succeeded!\n");
- }
-
- static void
- check_boot_pgdir(void) {
- pte_t *ptep;
- int i;
- for (i = 0; i < npage; i += PGSIZE) {
- assert((ptep = get_pte(boot_pgdir, (uintptr_t)KADDR(i), 0)) != NULL);
- assert(PTE_ADDR(*ptep) == i);
- }
-
- assert(PDE_ADDR(boot_pgdir[PDX(VPT)]) == PADDR(boot_pgdir));
-
- assert(boot_pgdir[0] == 0);
-
- struct Page *p;
- p = alloc_page();
- assert(page_insert(boot_pgdir, p, 0x100, PTE_W) == 0);
- assert(page_ref(p) == 1);
- assert(page_insert(boot_pgdir, p, 0x100 + PGSIZE, PTE_W) == 0);
- assert(page_ref(p) == 2);
-
- const char *str = "ucore: Hello world!!";
- strcpy((void *)0x100, str);
- assert(strcmp((void *)0x100, (void *)(0x100 + PGSIZE)) == 0);
-
- *(char *)(page2kva(p) + 0x100) = '\0';
- assert(strlen((const char *)0x100) == 0);
-
- free_page(p);
- free_page(pa2page(PDE_ADDR(boot_pgdir[0])));
- boot_pgdir[0] = 0;
-
- cprintf("check_boot_pgdir() succeeded!\n");
- }
-
- //perm2str - use string 'u,r,w,-' to present the permission
- static const char *
- perm2str(int perm) {
- static char str[4];
- str[0] = (perm & PTE_U) ? 'u' : '-';
- str[1] = 'r';
- str[2] = (perm & PTE_W) ? 'w' : '-';
- str[3] = '\0';
- return str;
- }
-
- //get_pgtable_items - In [left, right] range of PDT or PT, find a continuous linear addr space
- // - (left_store*X_SIZE~right_store*X_SIZE) for PDT or PT
- // - X_SIZE=PTSIZE=4M, if PDT; X_SIZE=PGSIZE=4K, if PT
- // paramemters:
- // left: no use ???
- // right: the high side of table's range
- // start: the low side of table's range
- // table: the beginning addr of table
- // left_store: the pointer of the high side of table's next range
- // right_store: the pointer of the low side of table's next range
- // return value: 0 - not a invalid item range, perm - a valid item range with perm permission
- static int
- get_pgtable_items(size_t left, size_t right, size_t start, uintptr_t *table, size_t *left_store, size_t *right_store) {
- if (start >= right) {
- return 0;
- }
- while (start < right && !(table[start] & PTE_P)) {
- start ++;
- }
- if (start < right) {
- if (left_store != NULL) {
- *left_store = start;
- }
- int perm = (table[start ++] & PTE_USER);
- while (start < right && (table[start] & PTE_USER) == perm) {
- start ++;
- }
- if (right_store != NULL) {
- *right_store = start;
- }
- return perm;
- }
- return 0;
- }
-
- //print_pgdir - print the PDT&PT
- void
- print_pgdir(void) {
- cprintf("-------------------- BEGIN --------------------\n");
- size_t left, right = 0, perm;
- while ((perm = get_pgtable_items(0, NPDEENTRY, right, vpd, &left, &right)) != 0) {
- cprintf("PDE(%03x) %08x-%08x %08x %s\n", right - left,
- left * PTSIZE, right * PTSIZE, (right - left) * PTSIZE, perm2str(perm));
- size_t l, r = left * NPTEENTRY;
- while ((perm = get_pgtable_items(left * NPTEENTRY, right * NPTEENTRY, r, vpt, &l, &r)) != 0) {
- cprintf(" |-- PTE(%05x) %08x-%08x %08x %s\n", r - l,
- l * PGSIZE, r * PGSIZE, (r - l) * PGSIZE, perm2str(perm));
- }
- }
- cprintf("--------------------- END ---------------------\n");
- }
-
- void *
- kmalloc(size_t n) {
- void * ptr=NULL;
- struct Page *base=NULL;
- assert(n > 0 && n < 1024*0124);
- int num_pages=(n+PGSIZE-1)/PGSIZE;
- base = alloc_pages(num_pages);
- assert(base != NULL);
- ptr=page2kva(base);
- return ptr;
- }
-
- void
- kfree(void *ptr, size_t n) {
- assert(n > 0 && n < 1024*0124);
- assert(ptr != NULL);
- struct Page *base=NULL;
- int num_pages=(n+PGSIZE-1)/PGSIZE;
- base = kva2page(ptr);
- free_pages(base, num_pages);
- }
|