Operating Systems

Lecture 3
Physical Memory Management

1S & CS
Tsinghua University

Acknowledgement:
materials from Dr. Zhang Yong Guang in MSRA,
And from http://williamstallings.com/OS/OS5e.html , http://www.0s-book.com

http://williamstallings.com/OS/OS5e.html
http://www.os-book.com/
http://www.os-book.com/
http://www.os-book.com/

S]
- Review

e Dual Mode Operation
e What is an Interrupt/Exception/System Call?
e The difference of Interrupt/Exception/System Call

e X806 related
o How to build IDT
o The hardware processing when INT happens
o The software processing when INT happens

o The system call processing (non-privilege(user) mode
/privilege(supervisor) mode)
o The different stacks in different privilege mode

NS : .
- Review: Dual-mode operation

e Why do we have “user mode” and “kernel
mode” ?

e Problem: Would you trust any users to ... read and
write memory, manage resource, access 1/0, ...?

e Solution: dual mode operation
¢ CPUhasa “mode” whenitis executingan instruction

¢ “UserMode” :canonly performa restricted set of operation
(applications)

¢ “Kernel Mode” :cando anything (OS kernel)

NS
~ From “User Mode” to “Kernel Mode”

e Interrupt: hardware device requests OS service

¢ CPU interrupts current execution and jumps to interrupt handler,
and returns when done

¢ Noneof thisis visibleto user program

e EXceptions: user program acts illegally

¢ CPU executesexception handlers
¢ May cause abnormal execution flow (such as terminated)

e System calls: user program requests OS service

& User program execute a trap instruction

¢ OS identifies the type of service and parameters, and executes the
requested service

¢ OS returnsto user programwhendone
¢ Thisappearsas a functioncall to the user program

)5S Qutline

® ¢ Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

e Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

it

Brief Introduction to Computer Architecture

Program and data

+Components of any exeF;L‘i?;;‘Tlere reside here when
Computer executing
Devices
CPU Memory
s (1/0)

//g @ ? @ >

ALU

Controller

Registers

Cache
MMU

Intel® 64 and 1A-32 Architectures Software Developer Manuals

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

&ttt

(S

Modern Memory Management Paradigm

(-1)U

0

P1

" 11

P2 I P4

Logical (virtual) space /= ™\

: M
Physical space

N4

U

Main memory

+Abstraction
» Logical address space

+Protection
> |Isolation

+«Programming models
» Shared memory

Disk (virtual memory)

Memory Hierarchy

microprocessor memory Today’ S
CPU latency example
L1 cache fastest 3 6GHz
, Hardware
L2 cache faster (MMU)
cache miss/fill
Main Memory fast 1.3GHz
| swapping/paging 0S
‘ oms

Disk (virtual memory) * slow (seek time)

http://en.wikipedia.org/wiki/Disk-drive_performance_characteristics#Seek_time

()S

OS Memory Models

+ Different ways to manage memory in an OS
» Program relocation
» Segmentation
» Paging
» Virtual memory
» Mostly (e.g., Linux): demand paging virtual memory

+ Implementation highly hardware dependent
» Must know memory architecture

» MMU (Memory Management Unit): hardware components
responsible for handling memory accesses requested by the CPU

)5S Qutline

e Computer Arch/Memory Hierarchy
@ o Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

e Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

Address Space & Address Generation

address space

. MAXgysl |
+Physical address space — The address space]
supported by the hardware -

» Startingat address 0, going to addressMAX MAXprog =

¢Logical address space — A process’ s view of its
own memory
» Startingat address 0, going to addressMAX .,

But where do addresses come from?
movl %eax, $O0xfffa620e

11

it

Address Space & Address Generation

Address Generation
- The compilation pipeline

0 100
Library Library
Routines Routines
prog P P: 0 . 10 | 110(
.] push ...
) PuSh - inc SP, 4 : 0
foo () inc SP, x e 75 jmp 175 jmp 1175
: jmp foo]))
end.P foé: - 75 T 175 T 1175
Compilation Assembly Linking Loading

(program relocation)

12

Address Space & Address Generation

Address Generation Time

+Compile time
» If memory locationknowna priori
» Must recompile code if starting location changes

eLoad time

» Compilermust generate relocatable code if memory locationis not
known at compile time

» Absolute addresses generated at load time
+EXxecution time

» The process can be moved during its execution

» Need hardware support for address translation

13

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

® e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

e Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

Address Space & Address Generation

Program Relocation

e Relocate logical addresses to physical at run time

» While we are relocating, also bounds check addresses
for safety.

e Require hardware support (MMU)

e Basic component

» Address translation with two registers: BASE and
LIMIT

Contiguous Memory Allocation

Address Translation

MAX, e
MEMORY
EXCEPTION
Logical no Physical n
Addresses @ Addresses > Y0
——
yes - .
10000
Instructions 500 1000
MAXprog
LIMIT BASE
Register Register
Program Ps

Logical addressspace

QO
\Y)

Contiguous Memory Allocation

The Fragmentation Problem
e Free memory cannot be utilized

e External fragmentation
» Unused memory between units of allocation

e Internal fragmentation

P

]

-

-
P
-
-
I
-
=

ogram Code(“text’

Data

Execution Stack

MAX

\

~ \
SO \y
SO \

PAS

17

U5 Contiguous Memory Allocation

Dynamic Allocation of Partitions

+Simple memory management approach:
» Allocate a partitionwhen a process is admitted into
the system

» Allocate a contiguous memory partitionto the
process

OS keeps track of...
Full-blocks —_L [r]

Empty-blocks (“holes”)

Allocation strategies
First-fit

Best-fit

Worst-fit

MAX MProgram]

U5 Contiguous Memory Allocation

First Fit Allocation

FreeBlock

To allocate n bytes, use the
first available free block such
that the block size is larger

than n.

To allocate 400 bytes,
we use the 1st free block
available

K bytes
\MKby

_

Ve

N

S oK bytes

e

{ 500 bytes

N\ 500 bytes

19

Contiguous Memory Allocation

Rationale & Implementation
+«Simplicity of implementation
+Requires:
» Free block list sorted by address

» Allocationrequires a search for a suitable partition

» De-allocationrequiresa check to see if the freed partition could be
merged with adjacent free partitions (if any)

Advantages Disadvantages
¢ Simple ¢ External fragmentation
¢ Tends to produce larger ¢ Uncertainty

free blocks toward the end
of the address space

20

U5 Contiguous Memory Allocation

Best Fit Allocation

To allocate n bytes, use the
smallest available free block
such that the block size is

larger than n.

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

1K bytes

2K bytes

2K bytes

500 bytes

21

U5 Contiguous Memory Allocation

Rationale & Implementation

+To avoid fragmenting big free blocks
+To minimize the size of external fragments produced
+Requires:

» Free block list sorted by size

» Allocationrequires search for a suitable partition
» De-allocation requiressearch + merge with adjacent free partitions, if any

Advantages Disadvantages
¢ Works well when most ¢ External fragmentation
allocations are of small ¢ Slow de-allocation

Size ¢ Tends to produce many

¢ Relatively simple useless tiny fragments (not
really great)

22

U5 Contiguous Memory Allocation

Worst Fit Allocation

To allocate n bytes, use the
largest available free block
such that the block size is
larger than n.

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

1K bytes

2K bytes

500 bytes

23

Contiguous Memory Allocation

Rationale & Implementation
+To avoid having too many tiny fragments

+Requires:
» Free block list sorted by size
» Allocationis fast (get the largest partition)

» De-allocation requires merge with adjacent free partitions, if any,
and then adjustingthe free block list

Advantages Disadvantages
¢ Works best if allocations ¢ Slow de-allocation
are of medium sizes ¢ External fragmentation

¢ Tends to break large free
blocks such that large
partitions cannot be allocated

24

Contiguous Memory Allocation

De-fragmentation by Compaction

+Relocate programs to coalesce holes

+Require all programs to be dynamically
relocatable

+Issues
> Whento relocate?
> Overhead

MAX FProgram)

Program

~rogram

Program

I
I
I
_Program
P2
]
]
I
_rrogram
]
I
_Program
P4
]

25

Contiguous Memory Allocation

De-fragmentation by Swapping

+Preempt processes & reclaim their memory

Ready

{ Running

ready 9
queue -
Suspended

suspended
queue

¢ Issue: which process(es) to swap?

I/0O queues

26

@izt

Contiguous Memory Allocation

Schematic View of Swapping

operating
system

user
space

main memory

process P,

process P,

backing store

27

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

® ¢ Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

28

Non-contiguous Allocation : Segmentation

+ Previously,
» Physical memory allocated to a processis contiguous
» Poor memory utilization
» Suffers from external fragmentation

+ Noncontiguous allocation
» Physical address space of a process is noncontiguous
» Better memory utilization and management
» Allow sharing of common blocks (code, data, library, etc.)
» Supportdynamic loading and dynamic linking

+ Two schemes: segmentation and paging

29

Non-contiguous Allocation : Segmentation

Dynamic Loading

+Routine is not loaded until i1t is called

+Better memory-space utilization; unused routine Is never
loaded

+Useful when large amounts of code are needed to handle
Infrequently occurring cases

+Most OS allows user programs to do dynamic loading of
components (relocatable object code)

+Some OS supports loadable kernel modules

30

(- IKEXS

US Non-contiguous Allocation : Segmentation

Dynamic Linking

+Linking postponed until execution time

» Small piece of code, stub, used to locate the appropriate memory-
residentlibrary routine

» Stubreplaces itself with the address of the routine, and executes
the routine

» Operating system needed to check if routine is in processes’
memory address

+Dynamic linking is particularly useful for libraries
» Better knownas shared libraries

+Dynamic linking in ucore

31

http://os.cs.tsinghua.edu.cn/oscourse/OsTrain2011/porting/SharedLib

(- IKEXS

US Non-contiguous Allocation : Segmentation

Segmentation

subroutine

symbol

table

Sqrt

main
program

logical address

+ Aprogram is a collection of
segments, such as
» Main program
» Subroutines

» Common libraries
» Common blocks

+ Purpose: enable finer grain
Isolation and sharing

32

Non-contiguous Allocation : Segmentation

Separating into Multiple Address Spaces

Heap

Run-Time

Stack

Proaram - 21

Data > I Libraries

0
Program ons_q

[Code

D
>

33

Non-contiguous Allocation : Segmentation

Segmentation Schemes

+New concept: A segment — a memory “object”

» Alogical addressspace

+A process now addresses objects —a pair (s, addr)

» S — segment number

» addr— an offset withinan object

n

2 1

0O n

S addr

0

n
\

J\.

0
J

Y Y

S addr

Segment + Address register scheme

Single addressscheme

34

Non-contiguous Allocation: Segmentation

Logical View of Segmentation

logical space

MMU >
with 2

segmentation
support 3

physical memory space

35

Non-contiguous Allocation: Segmentation

Segmentation Hardware Architecture Physical

Program _ Memory
P +Segment table (in cache)

¢STBR: Segment Table Base Register

Selector
- MEMORY

- EXCEPTION

54T 0" Offset
BRI TTTT1 {jqo
19 109 0 m
Logical '\é&yes N
Addresses ‘ AN !
Limit S
I Register \\ 1000

GDTR—— T base | Jimit_ 5
Vg I TrTe———- Descriptor \‘.}
STBR|—s el — . MMU

SegmentTable ~~~< pPT

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

® ¢ Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

37

Non-contiguous Allocation : Paging

+Divide physical memory into fixed-sized frames
» Sizeis powerof 2,e.g.,512,4096,8192

+Divide logical address space into same size pages

+To run a program of size n pages, find n free frames and
load program

+Set up a page table to translate logical to physical addresses
(pages to frames)

+Frame/page: basic units of memory allocation
» OS keep track of all free frames
» Same-sized frame eliminates external fragmentation

38

Non-contiguous Allocation : Paging

Frames

+Physical memory partitioned into equal
sized frames

A memory address is a pair (f, 0)
f — frame number (total 2% frames)

0 — frame offset (2° bytes/frames)
Physical address = 25xf + 0

addr: L
Pa)
F+S S
N J_ J
Y Y
f 0

(2F-1, 2°-1)
(£,0)

0]
X

f

39

Non-contiguous Allocation : Paging

Frame Example

+Example: A 16-bit address space with 9-bit

(512 byte) page frames

» Addressing location (3, 6) = 1542

addr:

3
4 A Y4 A
0lojofojoi1/1/0/0 0
16 10 9 1
N N J

3*512+6=1542

(3 ! 6?&

(0,0)"

—
e —

‘1542

Non-contiguous Allocation : Paging

Pages

e¢Aprocess’ s logical address space is
partitioned into equal sized pages
> |page| = [frame]

A logical address is a pair (p, 0)
P — page number (2P pages)

0 — page offset (2° bytes/pages)
Virtual address= 25xp + 0

addr: L
A 1
P+S S
g AN J

2n-1 =
(2P-1, 25-1)

(0,0)"

>
D D
D (D
D

Q

AU »

!
;

41

Non-contiguous Allocation : Paging

| AUAIress |

Paging Model
+Pages map to frames

+Pages are contiguous ... but are
arbitrarily located in physical memory

+Not all pages mapped at all times

»
0]

—PNVSICal]

kvlnnng .

)
O

42

it

Non-contiguous Allocation : Paging

Paging Hardware Architecture
Program +A page table maps logical

. P pages to physical frames
© »
BN (1111 W ITTT] Physical
20 | 109 1 16109 L VIEMOn
Logical
Addresses Physical
o Addresses
= L
[
N I
Page Table Base i I

Register CR3 Page Table

43

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

® ¢ Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

44

US Non-contiguous Allocation : Page Table

Page Table Structure

+ One table per process
> Part of process’ sstate

+Contents:
» Flags — dirty bit, resident

» PTBR: Page Table Base Register

p | o
B 11T

20 | 109 1

Logical

bit, clock/reference bit

> Frame number

f 0
B TTTT1

16 10 9 1

Addresses

PTBRI-(+)

Page Table

Physical
Addresses

45

Non-contiguous Allocation : Page Table

Example Address Translation

(4,1023)
A system with 16-bit addresses
» 32 KB of physical memory
(4,0) » 1024 byte pages
(3,1023)
Physical
Addresses
P l f 0
e (I 1111
15 1110 1 15 4 1110 1
Logical
Addresses
I
-110{0l0]olololol
011{110]0{110]0
I
I
I
(0,0)

Page Table 4

Non-contiguous Allocation : Page Table

Paging Performance Issue

+Problem — Requires 2 memory references!
» One access to get the page table entry
» One access to get the data

+Page table can be very large

» For a machine with 64-bitaddressesand 1024 byte pages, what is
the size of a page table?

+What to do? Hint: most computing problems are solved by
some form of...

» Caching

» Indirection

47

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

e ¢ Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

¢ Paged Segmentation Model

48

Siffrd

U5 Non-contiguous Allocation : Page Table

Translation Look-aside Buffer (TLB)

+Cache recently accessed page-to-frame translations
» TLB implemented in associative memory for fast access
» For TLB hit, physical page number obtained in 1 cycle

» For TLB miss, translationis updatedin TLB_, . f
Physical 1]
Addresses . g

- I Logical

Addresses >

Key Malve -} - ___________

Page Table

1

49

S Non-contiguous Allocation : Page Table

Multi-level Paging
+Add additional levels of

Indirection to the page table

i Second-Level
py sub-dividing page number Page Tables
Into k parts

> Createa “tree” of page tables

Logical Address

pl p2 p3 0
BN TTTITITITITITTIT]

I -
pl]

First-Level
Page Table

Third-Level
Page Tables

50

U5 Non-contiguous Allocation : Page Table

Example: Two-level Paging

CPU Memory
b Tt Lovie physicl gl
201 16 0 - 1 Addresses Addresses 16, 10 f 1

First-Level Second-Level
Page Table Page Table

51

U5 Non-contiguous Allocation : Page Table

The Problem of Large Address Spaces

+With large address spaces (64-bits) forward mapped page
tables become cumbersome.
» E.g.5 levelsof tables.

eInstead of making tables proportional to size of logical
address space, make them proportional to the size of physical
address space.

» Logical (virtual) address space is growing faster than physical.

52

U5 Non-contiguous Allocation : Page Table

Using Page Registers (aka Inverted Page Tables)

«Each frame is associated with a register containing
» Residencebit: whether or not the frame is occupied
» Occupier: page number of the page occupying frame
» Protectionbits

+Page registers: an example
» Physical memorysize: 16 MB
» Page size: 4096 bytes
» Number of frames: 4096
» Space used for page registers (assuming 8 bytes/register): 32 Kbytes
» Percentage overhead introduced by page registers: 0.2%
» Size of virtual memory: irrelevant

53

U5 Non-contiguous Allocation : Page Table

Page Registers Tradeoffs

+Advantages:

» Size of translation table occupies a very small fraction of
physical memory

» Size of translation table is independent of logical address space
size

+Disadvantages:
» We have reverse of the information that we need....
» How do we perform translation ?
» Search the translation table for the desired page number

54

S Non-contiguous Allocation : Page Table

Searching for a Page in Inverted Page Tables

+If the number of frames Is small, the page registers can
be placed in an associative memory

+Logical page number looked up In associative memory
» Hit: frame number Is extracted
» Miss: results in page fault

e Limitations:

» Large associative memories are expensive
< Difficultto make large and accessible in a single cycle.
< They consume a lot of power

55

U5 Non-contiguous Allocation : Page Table

Hashing Large Inverted Page Tables

+Hash page numbers to find corresponding frame numbers in
a “frame” table with one entry per frame

+Page 1 is placed in slot (i) where f is an agreed-upon hash
function

+To lookup page 1, perform the following:
» Compute f(i) and use it as an index into the table of page registers
» Extract the corresponding page register
» Check if the registertag containsi, if so, we have a hit
» Otherwise, we have a miss

56

S Non-contiguous Allocation : Page Table

Hashed Inverted Page Table Architecture

Memory

PID p | o o I 0
. T T Logical Physical , —
(LI [TTTITTIT] Addgresses Adg/resses B TTTTT]
l 20 ‘ 9 1 1Q‘9 ' 1
Hash |
Table

PTBR

Inverted Page Table

57

)5S Qutline

e Computer Arch/Memory Hierarchy
e Address Space & Address Generation

e Contiguous Memory Allocation
& Dynamic Allocation of Partitions

e Non-Contiguous Memory Allocation
& Segmentation
¢ Paging
¢ Page Table
- Translation Look-aside Buffer (TLB)

- Multi-Level Page Table
- Inverted Page Table

@ & Paged Segmentation Model

58

Paged Segmentation Model

+Segmentation has advantages for protection, paging has
advantages for memory utilization and optimizing transfer to
backing store.

+Can we combine segmentation and paging?

59

Paged Segmentation Hardware Architecture

+Add an additional level of indirection to page table

CPU Memory

> b . O Logical Physical f 0
BT TTIIIII11] BITITTT]

191 15 9 0 Addresses Addresses 1. 9 T
0

STBR

ProcessP " s SegmentS’ s
Segment Table Page Table

60

Sharing in Paged-Segmented Systems

+If segments are paged then page tables are automatically
shared

» Processesneed only agree on a number for the shared segment

shared seo

S

A’ s Segment Table

-

.
S Shared Segment

Page Table

B’ sSegment Table Physical Memory

61

()S

This week’s Work

Labl should be finished!

62

