diff --git a/Assignment7.md b/Assignment7.md
deleted file mode 100644
index bc4687f..0000000
--- a/Assignment7.md
+++ /dev/null
@@ -1,311 +0,0 @@
-# Assignment 7 指南
-
-## `******注意,实验结束请立即删除云主机、UFS文件存储和UAI Train交互式训练任务,节省费用******`
-
-## `******注意2,实验未结束且短期内不会继续实验,也请删除所有上述资源。下次实验时重新创建******`
-
-
-## 实验内容
-
-- 创建文件存储: `实验步骤 一)`
-- 创建云主机,并挂载文件存储:`实验步骤 二)`
-- 在水杉码园创建一个仓库,并下载至文件存储:`实验步骤 三)`
-- 创建UAI Train交互式训练任务,启动并切换成编辑模式: `实验步骤 四)`
-- 使用交互式训练任务训练一个能够识别MNIST手写数字的神经网络,并将所有内容同步到水杉码园:`实验步骤 五)`
-
-## 实验要求
-
-- 完成所有步骤,并在实验报告([模板下载](file/assignment7/学号-实验七.docx))中完成穿插在本指南中的作业1~作业5)。实验报告转成“学号-实验七.pdf”,并上传至http://113.31.104.68:3389/index.htm
-- 实验报告上传deadline: `12月4日`
-
-## 使用UCloud产品
-
-云主机UHost、文件存储UFS、镜像库UHub、AI训练UAI Train、私有网络VPC、基础网络UNet
-
-## 需要权限
-
-云主机UHost、文件存储UFS、镜像库UHub、AI训练UAI Train、基础网络UNet
-
-
-## 基础知识
-
-
-`MNIST:` MNIST是一个手写数字数据库,包含60000个训练样本和10000个测试样本,是一个能够快速上手的、用于尝试机器学习和模式识别技术的数据集。以下是部分MNIST中的样本。
-
-
-
-
-
-
-## 实验步骤
-
-### 一)创建一个文件存储
-
-#### 1)在产品->存储中选择“文件存储UFS”,然后点击创建文件系统。
-
-#### 2)如下图,存储类型选择SSD性能型,100GB,按时付费。
-
-
-
-
-
-#### 3)创建完毕后,点击添加挂载点,如下图所示选择一个VPC网络,使得相应的子网是DefaultNetwork,点击确定。这样我们等一下在DefaultNetwork下面创建一个云主机,就能把这个文件存储挂载到云主机上。
-
-
-
-
-
-#### 4)点击“管理挂载”,查看挂载信息,记住文件存储所在的ip地址,第二)步中我们把这个文件存储挂载到云主机上。
-
-
-
-
-
-
-## `**************作业1:请将含有文件存储ip地址信息的页面截图,并插入实验报告***************`
-
-
-### 二)将文件存储挂载到云主机上,使得它在逻辑上成为云主机的一个分区
-
-#### 1)创建一个1核1G的云主机,绑定弹性IP,按时付费(这个云主机必须在文件存储所挂载的子网中,否则无法和文件存储通信)
-
-#### 2)登录云主机,安装NFS
-
-```
-sudo yum install -y nfs-utils
-```
-
-NFS(Network File System)是一个能够使得本地主机访问远程主机文件系统的应用程序。因为步骤一)创建的文件存储对于当前的云主机来讲是一个远程存储(网络存储),使用NFS协议才能将其挂载到当前云主机上。
-
-#### 3)在云主机上挂载文件存储,挂载点为/mnt
-
-```
-sudo mount -t nfs4 你的文件存储IP地址:/ /mnt
-```
-
-#### 4)运行如下命令查看当前云主机的文件系统
-
-```
-df -hT
-```
-
-你应该看到如下图所示内容
-
-
-
-
-
-
-## `**************作业2:请将df -hT的运行后界面截图,并插入实验报告***************`
-
-
-
-### 三)在水杉码园创建一个仓库,并下载至文件存储
-
-#### 1)登录[水杉在线](https://www.shuishan.net.cn/),并从水杉在线门户进入“水杉码园”。创建一个仓库mnist(你也可以用其他命名,但后续操作请做相应修改),创建完毕后,找到你的仓库ssh地址,备用
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-#### 2)在云主机上安装git,并配置一下
-
-```
-sudo yum install -y git
-git config --global user.name "陆雪松"
-git config --global user.email "xuesong.lu.dase@gmail.com"
-```
-
-#### 3)生成云主机密钥,使用密钥访问水杉码园
-
-```
-ssh-keygen
-```
-不用在提示符中输入任何内容,连摁回车,密钥即生成。可以在~/.ssh/下看到你生成的两个密钥,id_rsa是私钥,id_rsa.pub是公钥。如果你使用root账号,密钥在/root/.ssh/目录下。接下来我们要把公钥给码园,以后从这台云主机访问码园,云主机会把私钥提供给码园进行身份验证。
-
-#### 4)打印并复制公钥的内容
-
-```
-cat ~/.ssh/id_rsa.pub
-```
-
-复制屏幕上出现的公钥内容
-
-#### 5)在码园中创建公钥,并粘贴上述公钥内容
-
-
-
-
-
-
-
-
-
-
-
-
-#### 6)在云主机上运行如下命令,取消码园密码访问
-
-```
-eval 'ssh-agent -s'
-exec ssh-agent bash
-ssh-add ~/.ssh/id_rsa
-ssh -T root@gitea.shuishan.net.cn
-```
-
-如果你看到类似如下输出,说明密钥访问设置成功
-
-
-
-
-
-#### 7)将mnist仓库下载到文件储存
-
-```
-cd /mnt
-sudo mkdir mnist
-sudo chown xuesong:xuesong mnist //更改mnist文件夹拥有者(即你的云主机登录账号)。假如你使用root账号,这步不需要
-cd mnist
-git init
-git pull root@gitea.shuishan.net.cn:luxuesong_dase_ecnu_edu_cn/mnist.git //将pull后面的内容替换成你仓库的ssh地址
-```
-
-#### 8)在mnist下面新建三个目录code,data,output,下一个步骤中会使用。创建完毕后,你的mnist文件夹应该有如下结构。
-
-
-
-
-
-在步骤四)和五)中,我们将代码放在code文件夹中,数据放在data中,模型放在output中
-
-
-## `**************作业3:请在mnist目录下运行ls -la命令并截图,插入实验报告***************`
-
-
-### 四)创建UAI Train交互式训练任务,并切换成`编辑模式` (重要!!)
-
-#### 1)在UCloud产品中人工智能分类下面,选择"AI训练服务 UAI Train",点击“交互式训练”选项卡->创建交互式训练任务
-
-#### 2)任务命名随意,在执行信息里面,输入Ucloud账号的公钥和私钥(右上角“API密钥”),代码镜像路径为默认,其余路径均选择UFS,然后如下图所示配置
-
-
-
-
-
-> 简要说明一下交互式训练的工作原理:启动任务的时候,UAI Train会运行一个docker容器,可以是UCloud的默认镜像,也可以是你自己创建的镜像,默认镜像已经安装了python,pytorch,tensorflow等等工具。我们配置的上述UFS路径,UAI Train会将他们映射到容器的/data目录下。也就是说,mnist/data会映射到容器的/data/data目录,mnist/code会映射到容器的/data/code目录。接下来我们便可以在容器中访问这些路径,运行代码。
-
-#### 3)配置完毕,创建任务,等状态变成“执行中”,说明创建成功。
-
-
-
-
-
-#### 4)这一步非常重要!!创建成功后,立即将任务模式从“训练模式”切换成`编辑模式`。
-
-> 点击“切换”
-
-
-
-
-
-> 选择一个镜像库,填入要保存的镜像名。如果你的项目中还没有镜像库,则新建一个镜像库。
-
-
-
-
-
-> 填入公钥和私钥,点击“确定”
-
-
-
-
-
-> 等待几分钟,等运行状态重新变成“执行中”,说明切换成功。这时候任务模式已经是“编辑模式”。
-
-
-
-
-
-说明:这么做的原因只有一个,训练模式跑的是GPU,太烧钱 :joy: :joy: !!
-写代码时是不需要GPU的,所以切换到编辑模式,跑在CPU机器上;当代码完成,需要大规模训练的时候,才使用训练模式。
-
-## 本实验不需要用到GPU,请确保一直在编辑模式下完成实验!!并且,实验暂停时,请点击“停止”暂停任务,这样便不会收费
-
-
-
-
-
-
-## `**************作业4:请将编辑模式页面截图,插入实验报告***************`
-
-
-### 五)使用交互式训练任务训练MNIST识别模型,最后将所有内容同步到水杉码园
-
-#### 1)点击训练任务的“Jupyter”按钮,进入jupyter notebook,我们看到了文件存储上的三个文件夹code,data和output,因为我们将它们映射到了容器中。
-
-
-
-
-
-#### 2)点击进入code,新建一个tensorflow的notebook,并重命名为mnist,然后保存文件
-
-
-
-
-
-
-
-
-
-#### 3)回到云主机,进入/mnt/mnist/data目录,下载mnist数据集。完成后你的mnist目录结构应该如下图所示(output中可能略有不同)
-
-```
-wget https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
-```
-
-
-
-
-
-#### 4)此时让我们先把这些文件push一把,同步到码园中。在/mnt/mnist下,运行
-
-```
-git remote add origin root@gitea.shuishan.net.cn:luxuesong_dase_ecnu_edu_cn/mnist.git //替换成你的码园仓库
-git add .
-git commit -m "xuesong's first commit"
-git push origin master
-```
-
-没有报错则成功push,去水杉码园查看你的仓库验证。
-
-#### 5)下载mnist训练代码[mnist.py](file/assignment7/mnist.py),并在刚刚创建的mnist.ipynb中验证、训练一个模型。
-
-
-## `**************作业5:上述代码训练的模型,在测试集上精度较低(如下图),请把测试集上的精度提升到95%以上(即运行model.evaluate(x_test, y_test)后,accurray在95%以上),将运行结果截图并插入实验报告***************`
-
-
-
-
-
-
-> 提示:你可以尝试增加epoch,也可以尝试更换优化器,其他优化器有Adagrad, RMSprop, Adam等
-
-
-
-#### 6)保存训练代码,并push到水杉码园中。
-
-```
-git add .
-git commit -m "commit source code and model"
-git push origin master
-```