diff --git a/COVID-19/Project/.vs/Project/v16/.suo b/COVID-19/Project/.vs/Project/v16/.suo
index 68e1f5b..f22d947 100644
Binary files a/COVID-19/Project/.vs/Project/v16/.suo and b/COVID-19/Project/.vs/Project/v16/.suo differ
diff --git a/COVID-19/Project/Project/Project.py b/COVID-19/Project/Project/Project.py
index 38784da..4a6277e 100644
--- a/COVID-19/Project/Project/Project.py
+++ b/COVID-19/Project/Project/Project.py
@@ -5,6 +5,8 @@ import numpy as np
import datetime
import math
from scipy import interpolate
+from pyecharts.charts import Map
+from pyecharts import options
plt.rcParams['axes.unicode_minus'] = False
@@ -37,7 +39,6 @@ dfChinaSept = China[China['Date'].dt.month == 9]
dfChinaOct = China[China['Date'].dt.month == 10]
dfChinaNov = China[China['Date'].dt.month == 11]
dfChinaDec = China[China['Date'].dt.month == 12]
-
dfUSJan = US[US['Date'].dt.month == 1]
dfUSFeb = US[US['Date'].dt.month == 2]
dfUSMar = US[US['Date'].dt.month == 3]
@@ -58,7 +59,6 @@ recoveredChina = [dfChinaJan['Recovered'].sum(),dfChinaFeb['Recovered'].sum(),df
dfChinaMay['Recovered'].sum(),dfChinaJun['Recovered'].sum(),dfChinaJul['Recovered'].sum(),dfChinaAug['Recovered'].sum(),
dfChinaSept['Recovered'].sum(),dfChinaOct['Recovered'].sum(),dfChinaNov['Recovered'].sum(),dfChinaDec['Recovered'].sum()]
recoverPossChina = []
-
confirmedUS = [dfUSJan['Confirmed'].sum(),dfUSFeb['Confirmed'].sum(),dfUSMar['Confirmed'].sum(),dfUSApr['Confirmed'].sum(),
dfUSMay['Confirmed'].sum(),dfUSJun['Confirmed'].sum(),dfUSJul['Confirmed'].sum(),dfUSAug['Confirmed'].sum(),
dfUSSept['Confirmed'].sum(),dfUSOct['Confirmed'].sum(),dfUSNov['Confirmed'].sum(),dfUSDec['Confirmed'].sum()]
@@ -102,28 +102,41 @@ datasUS = data3 + data4 + data5
labsUS = [d.get_label() for d in datasUS]
ax3.legend(datasUS, labsUS, loc="upper left")
-
-dataNew = pd.melt(China[['Date','Province/State','Confirmed','Recovered','Deaths']],
+#中国各省数据
+dataChina = pd.melt(China[['Date','Province/State','Confirmed','Recovered','Deaths']],
id_vars=['Date','Province/State'],value_vars=['Confirmed','Recovered','Deaths'],
var_name='group_var',value_name='Cases')
-dataNew['Date'] = pd.to_datetime(dataNew['Date'])
-dfNew = China[['Province/State','Confirmed','Recovered','Deaths']].groupby(['Province/State']).sum().reset_index()
-dataNew = pd.melt(dfNew,id_vars=['Province/State'],
+dataChina['Date'] = pd.to_datetime(dataChina['Date'])
+dfChina = China[['Province/State','Confirmed','Recovered','Deaths']].groupby(['Province/State']).sum().reset_index()
+dataChina = pd.melt(dfChina,id_vars=['Province/State'],
+ value_vars=['Confirmed','Deaths','Recovered'],
+ var_name='group_var',value_name='Cases')
+dataChina = dataChina.sort_values(by=['Province/State','group_var']).reset_index(drop=True)
+dataChina = dataChina.pivot_table(index=['Province/State'], columns='group_var')
+dataChina.columns = dataChina.columns.droplevel().rename(None)
+
+#各国数据
+dataWorld = pd.melt(dataset[['Date','Country/Region','Confirmed','Recovered','Deaths']],
+ id_vars=['Date','Country/Region'],value_vars=['Confirmed','Recovered','Deaths'],
+ var_name='group_var',value_name='Cases')
+dataWorld['Date'] = pd.to_datetime(dataWorld['Date'])
+dfWorld = dataset[['Country/Region','Confirmed','Recovered','Deaths']].groupby(['Country/Region']).sum().reset_index()
+dataWorld = pd.melt(dfWorld,id_vars=['Country/Region'],
value_vars=['Confirmed','Deaths','Recovered'],
var_name='group_var',value_name='Cases')
-dataNew = dataNew.sort_values(by=['Province/State','group_var']).reset_index(drop=True)
-dataNew = dataNew.pivot_table(index=['Province/State'], columns='group_var')
-dataNew.columns = dataNew.columns.droplevel().rename(None)
+dataWorld = dataWorld.sort_values(by=['Country/Region','group_var']).reset_index(drop=True)
+dataWorld = dataWorld.pivot_table(index=['Country/Region'], columns='group_var')
+dataWorld.columns = dataWorld.columns.droplevel().rename(None)
#中国各省份
-dataNew.sort_values('Confirmed', inplace=True)
+dataChina.sort_values('Confirmed', inplace=True)
xData = []
yConfirmed = []
yRecovered = []
for i in range(12):
- xData.append(dataNew.index[i])
- yConfirmed.append(dataNew['Confirmed'][i])
- yRecovered.append(dataNew['Recovered'][i])
+ xData.append(dataChina.index[i])
+ yConfirmed.append(dataChina['Confirmed'][i])
+ yRecovered.append(dataChina['Recovered'][i])
ax5 = fig.add_subplot(212)
ax5.set_title("Total Recovered/Confirmed of China(the bottom ten)",verticalalignment="bottom",fontsize="13")
@@ -134,4 +147,23 @@ ax5.bar(r1, yConfirmed, color='#FF0088', width=barWidth, edgecolor='white', labe
ax5.bar(r2, yRecovered, color='#00BBFF', width=barWidth, edgecolor='white', label='Recovered')
plt.xticks([r + barWidth for r in range(len(yConfirmed))], xData)
ax5.legend()
-plt.show()
\ No newline at end of file
+
+plt.show()
+
+ChinaConfirmed=[]
+worldConfirmed=[]
+
+for i in range(33):
+ ChinaConfirmed.append((dataChina.index[i],dataChina['Confirmed'][i]))
+
+map_China = Map()
+map_China.set_global_opts(title_opts=options.TitleOpts(title="疫情图-确诊人数"),
+ visualmap_opts=options.VisualMapOpts(is_piecewise=True,
+ pieces=[
+ {"min": 1000, "label": '>1000人',"color": "#6F171F"},
+ {"min": 500, "max": 1000,"label": '500-1000人', "color": "#C92C34"},
+ {"min": 100, "max": 499,"label": '100-499人', "color": "#E35B52"},
+ {"min": 10, "max": 99,"label": '10-99人', "color": "#F39E86"},
+ {"min": 1, "max": 9, "label": '1-9人', "color": "#FDEBD0"}]))
+map_China.add("确诊", ChinaConfirmed, maptype='china')
+map_China.render("province.html")
\ No newline at end of file
diff --git a/COVID-19/Project/Project/Project.pyproj b/COVID-19/Project/Project/Project.pyproj
index e3febd4..2400ed9 100644
--- a/COVID-19/Project/Project/Project.pyproj
+++ b/COVID-19/Project/Project/Project.pyproj
@@ -11,6 +11,7 @@
.
Project
Project
+ CondaEnv|CondaEnv|env
true
@@ -23,6 +24,9 @@
+
+
+