瀏覽代碼

Holt-Winters

master
杨浩然 4 年之前
父節點
當前提交
f3b7fad8d4
共有 2 個文件被更改,包括 63 次插入0 次删除
  1. 二進制
      COVID-19/Prediction/.vs/Prediction/v16/.suo
  2. +63
    -0
      COVID-19/Prediction/Prediction/Prediction.py

二進制
COVID-19/Prediction/.vs/Prediction/v16/.suo 查看文件


+ 63
- 0
COVID-19/Prediction/Prediction/Prediction.py 查看文件

@ -1 +1,64 @@
import pandas as pd
import datetime as DT
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import math
from statsmodels.tsa.api import SimpleExpSmoothing
from sklearn.metrics import mean_squared_error
#打开数据文件
dataset = pd.read_csv('E:\dase intro\COVID-19Analysis\COVID-19\covid-19-all.csv')
#数据预处理
def parse_ymd(s):
year_s, mon_s, day_s = s.split('-')
return datetime.datetime(int(year_s), int(mon_s), int(day_s)).strftime("%Y-%m-%d")
dataset = dataset.fillna(0)
dataset['Date'] = pd.to_datetime(dataset['Date'])
dataset = dataset[['Country/Region','Confirmed','Recovered','Deaths','Date']].groupby(['Country/Region','Date']).sum().reset_index()
#取出中、美、俄的数据
CN = dataset[dataset['Country/Region'] == 'China'].reset_index()
CN = CN.drop('index', 1)
US = dataset[dataset['Country/Region'] == 'US'].reset_index()
US = US.drop('index', 1)
RUS = dataset[dataset['Country/Region'] == 'Russia'].reset_index()
RUS = RUS.drop('index', 1)
#中国
#划分训练集、测试集
trainCN = CN[CN['Date'] < '2020-11-01 ']
testCN = CN[CN['Date'] >= '2020-11-01']
#简单指数法
yCNexp = testCN.copy()
confirmedCNexp = SimpleExpSmoothing(np.asarray(trainCN['Confirmed'])).fit(smoothing_level=0.4, optimized=False)
recoveredCNexp = SimpleExpSmoothing(np.asarray(trainCN['Recovered'])).fit(smoothing_level=0.4, optimized=False)
deathsCNexp = SimpleExpSmoothing(np.asarray(trainCN['Deaths'])).fit(smoothing_level=0.4, optimized=False)
yCNexp['confirmedTest'] = confirmedCNexp.forecast(len(testCN))
yCNexp['recoveredTest'] = recoveredCNexp.forecast(len(testCN))
yCNexp['deathsTest'] = deathsCNexp.forecast(len(testCN))
#RMSE
rmseCNexpCon = pow(mean_squared_error(np.asarray(testCN['Confirmed']), np.asarray(yCNexp['confirmedTest'])),0.05)
rmseCNexpRec = pow(mean_squared_error(np.asarray(testCN['Recovered']), np.asarray(yCNexp['recoveredTest'])),0.05)
rmseCNexpDea = pow(mean_squared_error(np.asarray(testCN['Deaths']), np.asarray(yCNexp['deathsTest'])),0.5)
#可视化
figCN = plt.figure()
axCNexp = figCN.add_subplot(311)
axCNexp.set_title("Simple Exponential Smoothing(CN)",verticalalignment="bottom",fontsize="13")
CN.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
yCNexp.index = pd.Index(pd.date_range('2020-11-01','2020-12-09',freq = '1D'))
axCNexp.plot(CN['Confirmed'],label="confirmed",linestyle=":")
axCNexp.plot(CN['Recovered'],label="recovered",linestyle=":")
axCNexp.plot(CN['Deaths'],label="deaths",linestyle=":")
axCNexp.plot(yCNexp['confirmedTest'],label="exp confirmed")
axCNexp.plot(yCNexp['recoveredTest'],label="exp recovered")
axCNexp.plot(yCNexp['deathsTest'],label="exp deaths")
plt.tight_layout()
plt.gcf().autofmt_xdate()
plt.legend()
plt.show()

Loading…
取消
儲存