You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

342 lines
9.1 KiB

3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
  1. /*
  2. #include <stdio.h>
  3. #include <unistd.h>
  4. #include <pwd.h>
  5. #include <curses.h>
  6. #include <stdlib.h>
  7. #include <limits.h>
  8. #include <termcap.h>
  9. #include <termios.h>
  10. #include <time.h>
  11. #include <string.h>
  12. #include <signal.h>
  13. #include <fcntl.h>
  14. #include <errno.h>
  15. #include <dirent.h>
  16. #include <assert.h>
  17. typedef int endpoint_t;
  18. typedef uint64_t u64_t;
  19. typedef long unsigned int vir_bytes;
  20. #define USED 0x1
  21. #define IS_TASK 0x2
  22. #define IS_SYSTEM 0x4
  23. #define BLOCKED 0x8
  24. #define TYPE_TASK 'T'
  25. #define TYPE_SYSTEM 'S'
  26. #define STATE_RUN 'R'
  27. #define MAX_NR_TASKS 1023
  28. #define SELF ((endpoint_t) 0x8ace)
  29. #define _MAX_MAGIC_PROC (SELF)
  30. #define _ENDPOINT_GENERATION_SIZE (MAX_NR_TASKS+_MAX_MAGIC_PROC+1)
  31. #define _ENDPOINT_P(e) \
  32. ((((e)+MAX_NR_TASKS) % _ENDPOINT_GENERATION_SIZE) - MAX_NR_TASKS)
  33. #define SLOT_NR(e) (_ENDPOINT_P(e) + 5)
  34. #define _PATH_PROC "/proc"
  35. #define CPUTIME(m, i) (m & (1L << (i)))
  36. const char *cputimenames[] = { "user", "ipc", "kernelcall" };
  37. #define CPUTIMENAMES (sizeof(cputimenames)/sizeof(cputimenames[0]))
  38. unsigned int nr_procs, nr_tasks;
  39. int nr_total=0;
  40. struct proc {
  41. int p_flags;
  42. endpoint_t p_endpoint;
  43. pid_t p_pid;
  44. u64_t p_cpucycles[CPUTIMENAMES];
  45. int p_priority;
  46. endpoint_t p_blocked;
  47. time_t p_user_time;
  48. vir_bytes p_memory;
  49. uid_t p_effuid;
  50. int p_nice;
  51. char p_name[16+1];
  52. };
  53. struct proc *proc = NULL, *prev_proc = NULL;
  54. //u64_t 64位 high和low32位 拼接成64位 high+low
  55. static inline u64_t make64(unsigned long lo, unsigned long hi)
  56. {
  57. return ((u64_t)hi << 32) | (u64_t)lo;
  58. }
  59. //把每个pid/psinfo的信息读出来
  60. //判断读取信息是否可用
  61. void parse_file(pid_t pid)
  62. {
  63. char path[PATH_MAX], name[256], type, state;
  64. int version, endpt, effuid;
  65. unsigned long cycles_hi, cycles_lo;
  66. FILE *fp;
  67. struct proc *p;
  68. int slot;
  69. int i;
  70. sprintf(path, "/proc/%d/psinfo", pid);
  71. if ((fp = fopen(path, "r")) == NULL)
  72. return;
  73. if (fscanf(fp, "%d", &version) != 1) {
  74. fclose(fp);
  75. return;
  76. }
  77. if (version != 0) {
  78. fputs("procfs version mismatch!\n", stderr);
  79. exit(1);
  80. }
  81. if (fscanf(fp, " %c %d", &type, &endpt) != 2) {
  82. fclose(fp);
  83. return;
  84. }
  85. //统计总file数
  86. //filenum+=1;
  87. //原来的slot超出了nr_total
  88. slot = SLOT_NR(endpt);
  89. slot++;
  90. //slot=slot_a;
  91. //slot_a+=1;//赋值需保证在数组中不会重复
  92. //判断endpoint的值是否合理 在0到nr_total的范围内
  93. if(slot < 0 || slot >= nr_total) {
  94. //fprintf(stderr, "top: unreasonable endpoint number %d\n", endpt);
  95. fclose(fp);
  96. return;
  97. }
  98. //slot为该进程结构体在数组中的位置
  99. p = &proc[slot];//把slot地址赋值给p
  100. if (type == TYPE_TASK)
  101. //标示task进程
  102. p->p_flags |= IS_TASK;
  103. else if (type == TYPE_SYSTEM)
  104. //标示system进程
  105. p->p_flags |= IS_SYSTEM;
  106. //将endpt和pid存入对应进程结构体
  107. p->p_endpoint = endpt;
  108. p->p_pid = pid;
  109. //读入名字 状态 阻塞状态 动态优先级 进程时间 高周期 低周期
  110. if (fscanf(fp, " %255s %c %d %d %ld %*u %lu %lu",
  111. name, &state, &p->p_blocked, &p->p_priority,
  112. &p->p_user_time, &cycles_hi, &cycles_lo) != 7) {
  113. fclose(fp);
  114. return;
  115. }
  116. //将指定长度的字符串复制到字符数组中
  117. strncpy(p->p_name, name, sizeof(p->p_name)-1);
  118. //数组置0
  119. p->p_name[sizeof(p->p_name)-1] = 0;
  120. if (state != STATE_RUN)//如果不是run的进程
  121. p->p_flags |= BLOCKED;//标志阻塞
  122. //拼接成64位,放在p_cpucycles[]数组中
  123. p->p_cpucycles[0] = make64(cycles_lo, cycles_hi);
  124. p->p_memory = 0L;
  125. //判断是否为有效用户ID
  126. if (!(p->p_flags & IS_TASK)) {
  127. int j;
  128. //读如内存 有效用户ID 和静态优先级
  129. if ((j=fscanf(fp, " %lu %*u %*u %*c %*d %*u %u %*u %d %*c %*d %*u",
  130. &p->p_memory, &effuid, &p->p_nice)) != 3) {
  131. fclose(fp);
  132. return;
  133. }
  134. p->p_effuid = effuid;
  135. } else p->p_effuid = 0;
  136. //连续读CPUTIMENAMES次cycles_hi,cycle_lo
  137. for(i = 1; i < CPUTIMENAMES; i++) {
  138. if(fscanf(fp, " %lu %lu",
  139. &cycles_hi, &cycles_lo) == 2) {
  140. //拼接成64位,放在p_cpucycles[]数组中
  141. p->p_cpucycles[i] = make64(cycles_lo, cycles_hi);
  142. } else {
  143. p->p_cpucycles[i] = 0;
  144. }
  145. }
  146. //读如内存 存入进程结构体
  147. if ((p->p_flags & IS_TASK)) {
  148. if(fscanf(fp, " %lu", &p->p_memory) != 1) {
  149. p->p_memory = 0;
  150. }
  151. }
  152. //按位或
  153. p->p_flags |= USED;
  154. fclose(fp);
  155. }
  156. void parse_dir(void)
  157. {
  158. DIR *p_dir;
  159. struct dirent *p_ent;
  160. pid_t pid;
  161. char *end;
  162. if ((p_dir = opendir("/proc/")) == NULL) {
  163. perror("opendir on /proc");
  164. exit(1);
  165. }
  166. p_ent=readdir(p_dir);
  167. while(p_ent != NULL){
  168. pid=strtol(p_ent->d_name,&end,10);
  169. if(pid!=0 && !end[0]){
  170. parse_file(pid);
  171. }
  172. p_ent=readdir(p_dir);
  173. }
  174. closedir(p_dir);
  175. }
  176. int print_memory(void)
  177. {
  178. FILE *fp;
  179. unsigned int pagesize;
  180. unsigned long total, free, largest, cached;
  181. if ((fp = fopen("/proc/meminfo", "r")) == NULL)
  182. return 0;
  183. if (fscanf(fp, "%u %lu %lu %lu %lu", &pagesize, &total, &free,
  184. &largest, &cached) != 5) {
  185. fclose(fp);
  186. return 0;
  187. }
  188. fclose(fp);
  189. printf("main memory: %ldK total, %ldK free, %ldK contig free, "
  190. "%ldK cached\n",
  191. (pagesize * total)/1024, (pagesize * free)/1024,
  192. (pagesize * largest)/1024, (pagesize * cached)/1024);
  193. return 1;
  194. }
  195. struct tp {
  196. struct proc *p;
  197. u64_t ticks;
  198. };
  199. //计算cputicks 用到当前进程和其他进程的,还涉及CPUTIME
  200. //滴答并不是简单的结构体中的滴答,因为在写文件的时候需要更新。需要通过当前进程来和该进程一起计算
  201. u64_t cputicks(struct proc *p1, struct proc *p2, int timemode)
  202. {
  203. int i;
  204. u64_t t = 0;
  205. //计算每个进程proc的滴答,通过proc和当前进程prev_proc做比较,如果endpoint相等,则在循环中分别计算
  206. for(i = 0; i < CPUTIMENAMES; i++) {
  207. if(!CPUTIME(timemode, i))
  208. continue;
  209. if(p1->p_endpoint == p2->p_endpoint) {
  210. t = t + p2->p_cpucycles[i] - p1->p_cpucycles[i];
  211. } else {
  212. t = t + p2->p_cpucycles[i];
  213. }
  214. }
  215. return t;
  216. }
  217. void print_procs(
  218. struct proc *proc1, struct proc *proc2, int cputimemode)
  219. {
  220. int p, nprocs;
  221. u64_t idleticks = 0;
  222. u64_t kernelticks = 0;
  223. u64_t systemticks = 0;
  224. u64_t userticks = 0;
  225. u64_t total_ticks = 0;
  226. int blockedseen = 0;
  227. static struct tp *tick_procs = NULL;
  228. if (tick_procs == NULL) {
  229. tick_procs = malloc(nr_total * sizeof(tick_procs[0]));
  230. if (tick_procs == NULL) {
  231. fprintf(stderr, "Out of memory!\n");
  232. exit(1);
  233. }
  234. }
  235. for(p = nprocs = 0; p < nr_total; p++) {
  236. u64_t uticks;
  237. //如果当前进程标志不是used就continue 看下一个进程。
  238. if(!(proc2[p].p_flags & USED))
  239. continue;
  240. tick_procs[nprocs].p = proc2 + p;
  241. tick_procs[nprocs].ticks = cputicks(&proc1[p], &proc2[p], cputimemode);
  242. //更新实时uticks
  243. uticks = cputicks(&proc1[p], &proc2[p], 1);
  244. //算出总的ticks
  245. total_ticks = total_ticks + uticks;
  246. //判断是否为idletick
  247. //为0一直continue 不用计算
  248. if(p-5 == 317) {
  249. idleticks = uticks;
  250. continue;
  251. }
  252. //判断是否为kerneltick
  253. if(p-5 == ((endpoint_t) -1)) {
  254. kernelticks = uticks;
  255. }
  256. if(!(proc2[p].p_flags & IS_TASK)) {
  257. if(proc2[p].p_flags & IS_SYSTEM)
  258. systemticks = systemticks + tick_procs[nprocs].ticks;
  259. else
  260. userticks = userticks + tick_procs[nprocs].ticks;
  261. }
  262. nprocs++;
  263. }
  264. if (total_ticks == 0)
  265. return;
  266. printf("CPU states: %6.2f%% user, ", 100.0 * userticks / total_ticks);
  267. printf("%6.2f%% system, ", 100.0 * systemticks / total_ticks);
  268. printf("%6.2f%% kernel, ", 100.0 * kernelticks/ total_ticks);
  269. printf("%6.2f%% idle",100.00-(100.0 * (kernelticks+userticks+systemticks)/ total_ticks));
  270. printf("\n");
  271. }
  272. void get_procs(void)
  273. {
  274. struct proc *p;
  275. int i;
  276. p = prev_proc;
  277. prev_proc = proc;
  278. proc = p;
  279. if (proc == NULL) {
  280. proc = malloc(nr_total * sizeof(proc[0]));
  281. if (proc == NULL) {
  282. fprintf(stderr, "Out of memory!\n");
  283. exit(1);
  284. }
  285. }
  286. for (i = 0; i < nr_total; i++)
  287. proc[i].p_flags = 0;
  288. parse_dir();
  289. }
  290. void getkinfo(void)
  291. {
  292. FILE *fp;
  293. if ((fp = fopen("/proc/kinfo", "r")) == NULL) {
  294. exit(1);
  295. }
  296. if (fscanf(fp, "%u %u", &nr_procs, &nr_tasks) != 2) {
  297. exit(1);
  298. }
  299. fclose(fp);
  300. nr_total = (int) (nr_procs + nr_tasks);
  301. }
  302. void mytop()
  303. {
  304. if (chdir("/proc") != 0) {
  305. perror("chdir to /proc" );
  306. return;
  307. }
  308. print_memory();
  309. getkinfo();
  310. get_procs();
  311. if(prev_proc==NULL)
  312. get_procs();
  313. print_procs(prev_proc,proc,1);
  314. return;
  315. }
  316. */
  317. void mytop()
  318. {
  319. }