|
|
- function plantuml_imgsrc(data){
- return 'https://www.plantuml.com/plantuml/svg/'+plantuml_encode(data);
- }
-
- function plantuml_encode(data){
- return plantuml_encode64(deflate(unescape(encodeURIComponent(data))))
- }
-
- function plantuml_encode64(data) {
- r = '';
- for (i = 0; i < data.length; i += 3) {
- if (i + 2 == data.length) {
- r += plantuml_append3bytes(data.charCodeAt(i), data.charCodeAt(i + 1), 0);
- } else if (i + 1 == data.length) {
- r += plantuml_append3bytes(data.charCodeAt(i), 0, 0);
- } else {
- r += plantuml_append3bytes(data.charCodeAt(i), data.charCodeAt(i + 1),
- data.charCodeAt(i + 2));
- }
- }
- return r;
- }
-
- function plantuml_append3bytes(b1, b2, b3) {
- c1 = b1 >> 2;
- c2 = ((b1 & 0x3) << 4) | (b2 >> 4);
- c3 = ((b2 & 0xF) << 2) | (b3 >> 6);
- c4 = b3 & 0x3F;
- r = '';
- r += plantuml_encode6bit(c1 & 0x3F);
- r += plantuml_encode6bit(c2 & 0x3F);
- r += plantuml_encode6bit(c3 & 0x3F);
- r += plantuml_encode6bit(c4 & 0x3F);
- return r;
- }
-
- function plantuml_encode6bit(b) {
- if (b < 10) {
- return String.fromCharCode(48 + b);
- }
- b -= 10;
- if (b < 26) {
- return String.fromCharCode(65 + b);
- }
- b -= 26;
- if (b < 26) {
- return String.fromCharCode(97 + b);
- }
- b -= 26;
- if (b == 0) {
- return '-';
- }
- if (b == 1) {
- return '_';
- }
- return '?';
- }
-
-
-
-
-
-
-
-
-
- /*
- * $Id: rawdeflate.js,v 0.3 2009/03/01 19:05:05 dankogai Exp dankogai $
- *
- * Original:
- * http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
- */
-
- // if run as a web worker, respond to messages by deflating them
- var deflate = (function() {
-
- /* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
- * Version: 1.0.1
- * LastModified: Dec 25 1999
- */
-
- /* Interface:
- * data = deflate(src);
- */
-
- /* constant parameters */
- var zip_WSIZE = 32768; // Sliding Window size
- var zip_STORED_BLOCK = 0;
- var zip_STATIC_TREES = 1;
- var zip_DYN_TREES = 2;
-
- /* for deflate */
- var zip_DEFAULT_LEVEL = 6;
- var zip_FULL_SEARCH = true;
- var zip_INBUFSIZ = 32768; // Input buffer size
- var zip_INBUF_EXTRA = 64; // Extra buffer
- var zip_OUTBUFSIZ = 1024 * 8;
- var zip_window_size = 2 * zip_WSIZE;
- var zip_MIN_MATCH = 3;
- var zip_MAX_MATCH = 258;
- var zip_BITS = 16;
- // for SMALL_MEM
- var zip_LIT_BUFSIZE = 0x2000;
- var zip_HASH_BITS = 13;
- // for MEDIUM_MEM
- // var zip_LIT_BUFSIZE = 0x4000;
- // var zip_HASH_BITS = 14;
- // for BIG_MEM
- // var zip_LIT_BUFSIZE = 0x8000;
- // var zip_HASH_BITS = 15;
- //if(zip_LIT_BUFSIZE > zip_INBUFSIZ)
- // alert("error: zip_INBUFSIZ is too small");
- //if((zip_WSIZE<<1) > (1<<zip_BITS))
- // alert("error: zip_WSIZE is too large");
- //if(zip_HASH_BITS > zip_BITS-1)
- // alert("error: zip_HASH_BITS is too large");
- //if(zip_HASH_BITS < 8 || zip_MAX_MATCH != 258)
- // alert("error: Code too clever");
- var zip_DIST_BUFSIZE = zip_LIT_BUFSIZE;
- var zip_HASH_SIZE = 1 << zip_HASH_BITS;
- var zip_HASH_MASK = zip_HASH_SIZE - 1;
- var zip_WMASK = zip_WSIZE - 1;
- var zip_NIL = 0; // Tail of hash chains
- var zip_TOO_FAR = 4096;
- var zip_MIN_LOOKAHEAD = zip_MAX_MATCH + zip_MIN_MATCH + 1;
- var zip_MAX_DIST = zip_WSIZE - zip_MIN_LOOKAHEAD;
- var zip_SMALLEST = 1;
- var zip_MAX_BITS = 15;
- var zip_MAX_BL_BITS = 7;
- var zip_LENGTH_CODES = 29;
- var zip_LITERALS =256;
- var zip_END_BLOCK = 256;
- var zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES;
- var zip_D_CODES = 30;
- var zip_BL_CODES = 19;
- var zip_REP_3_6 = 16;
- var zip_REPZ_3_10 = 17;
- var zip_REPZ_11_138 = 18;
- var zip_HEAP_SIZE = 2 * zip_L_CODES + 1;
- var zip_H_SHIFT = parseInt((zip_HASH_BITS + zip_MIN_MATCH - 1) /
- zip_MIN_MATCH);
-
- /* variables */
- var zip_free_queue;
- var zip_qhead, zip_qtail;
- var zip_initflag;
- var zip_outbuf = null;
- var zip_outcnt, zip_outoff;
- var zip_complete;
- var zip_window;
- var zip_d_buf;
- var zip_l_buf;
- var zip_prev;
- var zip_bi_buf;
- var zip_bi_valid;
- var zip_block_start;
- var zip_ins_h;
- var zip_hash_head;
- var zip_prev_match;
- var zip_match_available;
- var zip_match_length;
- var zip_prev_length;
- var zip_strstart;
- var zip_match_start;
- var zip_eofile;
- var zip_lookahead;
- var zip_max_chain_length;
- var zip_max_lazy_match;
- var zip_compr_level;
- var zip_good_match;
- var zip_nice_match;
- var zip_dyn_ltree;
- var zip_dyn_dtree;
- var zip_static_ltree;
- var zip_static_dtree;
- var zip_bl_tree;
- var zip_l_desc;
- var zip_d_desc;
- var zip_bl_desc;
- var zip_bl_count;
- var zip_heap;
- var zip_heap_len;
- var zip_heap_max;
- var zip_depth;
- var zip_length_code;
- var zip_dist_code;
- var zip_base_length;
- var zip_base_dist;
- var zip_flag_buf;
- var zip_last_lit;
- var zip_last_dist;
- var zip_last_flags;
- var zip_flags;
- var zip_flag_bit;
- var zip_opt_len;
- var zip_static_len;
- var zip_deflate_data;
- var zip_deflate_pos;
-
- /* objects (deflate) */
-
- function zip_DeflateCT() {
- this.fc = 0; // frequency count or bit string
- this.dl = 0; // father node in Huffman tree or length of bit string
- }
-
- function zip_DeflateTreeDesc() {
- this.dyn_tree = null; // the dynamic tree
- this.static_tree = null; // corresponding static tree or NULL
- this.extra_bits = null; // extra bits for each code or NULL
- this.extra_base = 0; // base index for extra_bits
- this.elems = 0; // max number of elements in the tree
- this.max_length = 0; // max bit length for the codes
- this.max_code = 0; // largest code with non zero frequency
- }
-
- /* Values for max_lazy_match, good_match and max_chain_length, depending on
- * the desired pack level (0..9). The values given below have been tuned to
- * exclude worst case performance for pathological files. Better values may be
- * found for specific files.
- */
- function zip_DeflateConfiguration(a, b, c, d) {
- this.good_length = a; // reduce lazy search above this match length
- this.max_lazy = b; // do not perform lazy search above this match length
- this.nice_length = c; // quit search above this match length
- this.max_chain = d;
- }
-
- function zip_DeflateBuffer() {
- this.next = null;
- this.len = 0;
- this.ptr = new Array(zip_OUTBUFSIZ);
- this.off = 0;
- }
-
- /* constant tables */
- var zip_extra_lbits = [
- 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
- var zip_extra_dbits = [
- 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
- var zip_extra_blbits = [
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
- var zip_bl_order = [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
- var zip_configuration_table = [
- new zip_DeflateConfiguration(0, 0, 0, 0),
- new zip_DeflateConfiguration(4, 4, 8, 4),
- new zip_DeflateConfiguration(4, 5, 16, 8),
- new zip_DeflateConfiguration(4, 6, 32, 32),
- new zip_DeflateConfiguration(4, 4, 16, 16),
- new zip_DeflateConfiguration(8, 16, 32, 32),
- new zip_DeflateConfiguration(8, 16, 128, 128),
- new zip_DeflateConfiguration(8, 32, 128, 256),
- new zip_DeflateConfiguration(32, 128, 258, 1024),
- new zip_DeflateConfiguration(32, 258, 258, 4096)];
-
-
- /* routines (deflate) */
-
- function zip_deflate_start(level) {
- var i;
-
- if(!level)
- level = zip_DEFAULT_LEVEL;
- else if(level < 1)
- level = 1;
- else if(level > 9)
- level = 9;
-
- zip_compr_level = level;
- zip_initflag = false;
- zip_eofile = false;
- if(zip_outbuf != null)
- return;
-
- zip_free_queue = zip_qhead = zip_qtail = null;
- zip_outbuf = new Array(zip_OUTBUFSIZ);
- zip_window = new Array(zip_window_size);
- zip_d_buf = new Array(zip_DIST_BUFSIZE);
- zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA);
- zip_prev = new Array(1 << zip_BITS);
- zip_dyn_ltree = new Array(zip_HEAP_SIZE);
- for(i = 0; i < zip_HEAP_SIZE; i++)
- zip_dyn_ltree[i] = new zip_DeflateCT();
- zip_dyn_dtree = new Array(2*zip_D_CODES+1);
- for(i = 0; i < 2*zip_D_CODES+1; i++)
- zip_dyn_dtree[i] = new zip_DeflateCT();
- zip_static_ltree = new Array(zip_L_CODES+2);
- for(i = 0; i < zip_L_CODES+2; i++)
- zip_static_ltree[i] = new zip_DeflateCT();
- zip_static_dtree = new Array(zip_D_CODES);
- for(i = 0; i < zip_D_CODES; i++)
- zip_static_dtree[i] = new zip_DeflateCT();
- zip_bl_tree = new Array(2*zip_BL_CODES+1);
- for(i = 0; i < 2*zip_BL_CODES+1; i++)
- zip_bl_tree[i] = new zip_DeflateCT();
- zip_l_desc = new zip_DeflateTreeDesc();
- zip_d_desc = new zip_DeflateTreeDesc();
- zip_bl_desc = new zip_DeflateTreeDesc();
- zip_bl_count = new Array(zip_MAX_BITS+1);
- zip_heap = new Array(2*zip_L_CODES+1);
- zip_depth = new Array(2*zip_L_CODES+1);
- zip_length_code = new Array(zip_MAX_MATCH-zip_MIN_MATCH+1);
- zip_dist_code = new Array(512);
- zip_base_length = new Array(zip_LENGTH_CODES);
- zip_base_dist = new Array(zip_D_CODES);
- zip_flag_buf = new Array(parseInt(zip_LIT_BUFSIZE / 8));
- }
-
- function zip_deflate_end() {
- zip_free_queue = zip_qhead = zip_qtail = null;
- zip_outbuf = null;
- zip_window = null;
- zip_d_buf = null;
- zip_l_buf = null;
- zip_prev = null;
- zip_dyn_ltree = null;
- zip_dyn_dtree = null;
- zip_static_ltree = null;
- zip_static_dtree = null;
- zip_bl_tree = null;
- zip_l_desc = null;
- zip_d_desc = null;
- zip_bl_desc = null;
- zip_bl_count = null;
- zip_heap = null;
- zip_depth = null;
- zip_length_code = null;
- zip_dist_code = null;
- zip_base_length = null;
- zip_base_dist = null;
- zip_flag_buf = null;
- }
-
- function zip_reuse_queue(p) {
- p.next = zip_free_queue;
- zip_free_queue = p;
- }
-
- function zip_new_queue() {
- var p;
-
- if(zip_free_queue != null)
- {
- p = zip_free_queue;
- zip_free_queue = zip_free_queue.next;
- }
- else
- p = new zip_DeflateBuffer();
- p.next = null;
- p.len = p.off = 0;
-
- return p;
- }
-
- function zip_head1(i) {
- return zip_prev[zip_WSIZE + i];
- }
-
- function zip_head2(i, val) {
- return zip_prev[zip_WSIZE + i] = val;
- }
-
- /* put_byte is used for the compressed output, put_ubyte for the
- * uncompressed output. However unlzw() uses window for its
- * suffix table instead of its output buffer, so it does not use put_ubyte
- * (to be cleaned up).
- */
- function zip_put_byte(c) {
- zip_outbuf[zip_outoff + zip_outcnt++] = c;
- if(zip_outoff + zip_outcnt == zip_OUTBUFSIZ)
- zip_qoutbuf();
- }
-
- /* Output a 16 bit value, lsb first */
- function zip_put_short(w) {
- w &= 0xffff;
- if(zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) {
- zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff);
- zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8);
- } else {
- zip_put_byte(w & 0xff);
- zip_put_byte(w >>> 8);
- }
- }
-
- /* ==========================================================================
- * Insert string s in the dictionary and set match_head to the previous head
- * of the hash chain (the most recent string with same hash key). Return
- * the previous length of the hash chain.
- * IN assertion: all calls to to INSERT_STRING are made with consecutive
- * input characters and the first MIN_MATCH bytes of s are valid
- * (except for the last MIN_MATCH-1 bytes of the input file).
- */
- function zip_INSERT_STRING() {
- zip_ins_h = ((zip_ins_h << zip_H_SHIFT)
- ^ (zip_window[zip_strstart + zip_MIN_MATCH - 1] & 0xff))
- & zip_HASH_MASK;
- zip_hash_head = zip_head1(zip_ins_h);
- zip_prev[zip_strstart & zip_WMASK] = zip_hash_head;
- zip_head2(zip_ins_h, zip_strstart);
- }
-
- /* Send a code of the given tree. c and tree must not have side effects */
- function zip_SEND_CODE(c, tree) {
- zip_send_bits(tree[c].fc, tree[c].dl);
- }
-
- /* Mapping from a distance to a distance code. dist is the distance - 1 and
- * must not have side effects. dist_code[256] and dist_code[257] are never
- * used.
- */
- function zip_D_CODE(dist) {
- return (dist < 256 ? zip_dist_code[dist]
- : zip_dist_code[256 + (dist>>7)]) & 0xff;
- }
-
- /* ==========================================================================
- * Compares to subtrees, using the tree depth as tie breaker when
- * the subtrees have equal frequency. This minimizes the worst case length.
- */
- function zip_SMALLER(tree, n, m) {
- return tree[n].fc < tree[m].fc ||
- (tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]);
- }
-
- /* ==========================================================================
- * read string data
- */
- function zip_read_buff(buff, offset, n) {
- var i;
- for(i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++)
- buff[offset + i] =
- zip_deflate_data.charCodeAt(zip_deflate_pos++) & 0xff;
- return i;
- }
-
- /* ==========================================================================
- * Initialize the "longest match" routines for a new file
- */
- function zip_lm_init() {
- var j;
-
- /* Initialize the hash table. */
- for(j = 0; j < zip_HASH_SIZE; j++)
- // zip_head2(j, zip_NIL);
- zip_prev[zip_WSIZE + j] = 0;
- /* prev will be initialized on the fly */
-
- /* Set the default configuration parameters:
- */
- zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy;
- zip_good_match = zip_configuration_table[zip_compr_level].good_length;
- if(!zip_FULL_SEARCH)
- zip_nice_match = zip_configuration_table[zip_compr_level].nice_length;
- zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain;
-
- zip_strstart = 0;
- zip_block_start = 0;
-
- zip_lookahead = zip_read_buff(zip_window, 0, 2 * zip_WSIZE);
- if(zip_lookahead <= 0) {
- zip_eofile = true;
- zip_lookahead = 0;
- return;
- }
- zip_eofile = false;
- /* Make sure that we always have enough lookahead. This is important
- * if input comes from a device such as a tty.
- */
- while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
- zip_fill_window();
-
- /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
- * not important since only literal bytes will be emitted.
- */
- zip_ins_h = 0;
- for(j = 0; j < zip_MIN_MATCH - 1; j++) {
- // UPDATE_HASH(ins_h, window[j]);
- zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK;
- }
- }
-
- /* ==========================================================================
- * Set match_start to the longest match starting at the given string and
- * return its length. Matches shorter or equal to prev_length are discarded,
- * in which case the result is equal to prev_length and match_start is
- * garbage.
- * IN assertions: cur_match is the head of the hash chain for the current
- * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
- */
- function zip_longest_match(cur_match) {
- var chain_length = zip_max_chain_length; // max hash chain length
- var scanp = zip_strstart; // current string
- var matchp; // matched string
- var len; // length of current match
- var best_len = zip_prev_length; // best match length so far
-
- /* Stop when cur_match becomes <= limit. To simplify the code,
- * we prevent matches with the string of window index 0.
- */
- var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL);
-
- var strendp = zip_strstart + zip_MAX_MATCH;
- var scan_end1 = zip_window[scanp + best_len - 1];
- var scan_end = zip_window[scanp + best_len];
-
- /* Do not waste too much time if we already have a good match: */
- if(zip_prev_length >= zip_good_match)
- chain_length >>= 2;
-
- // Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead");
-
- do {
- // Assert(cur_match < encoder->strstart, "no future");
- matchp = cur_match;
-
- /* Skip to next match if the match length cannot increase
- * or if the match length is less than 2:
- */
- if(zip_window[matchp + best_len] != scan_end ||
- zip_window[matchp + best_len - 1] != scan_end1 ||
- zip_window[matchp] != zip_window[scanp] ||
- zip_window[++matchp] != zip_window[scanp + 1]) {
- continue;
- }
-
- /* The check at best_len-1 can be removed because it will be made
- * again later. (This heuristic is not always a win.)
- * It is not necessary to compare scan[2] and match[2] since they
- * are always equal when the other bytes match, given that
- * the hash keys are equal and that HASH_BITS >= 8.
- */
- scanp += 2;
- matchp++;
-
- /* We check for insufficient lookahead only every 8th comparison;
- * the 256th check will be made at strstart+258.
- */
- do {
- } while(zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- zip_window[++scanp] == zip_window[++matchp] &&
- scanp < strendp);
-
- len = zip_MAX_MATCH - (strendp - scanp);
- scanp = strendp - zip_MAX_MATCH;
-
- if(len > best_len) {
- zip_match_start = cur_match;
- best_len = len;
- if(zip_FULL_SEARCH) {
- if(len >= zip_MAX_MATCH) break;
- } else {
- if(len >= zip_nice_match) break;
- }
-
- scan_end1 = zip_window[scanp + best_len-1];
- scan_end = zip_window[scanp + best_len];
- }
- } while((cur_match = zip_prev[cur_match & zip_WMASK]) > limit
- && --chain_length != 0);
-
- return best_len;
- }
-
- /* ==========================================================================
- * Fill the window when the lookahead becomes insufficient.
- * Updates strstart and lookahead, and sets eofile if end of input file.
- * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
- * OUT assertions: at least one byte has been read, or eofile is set;
- * file reads are performed for at least two bytes (required for the
- * translate_eol option).
- */
- function zip_fill_window() {
- var n, m;
-
- // Amount of free space at the end of the window.
- var more = zip_window_size - zip_lookahead - zip_strstart;
-
- /* If the window is almost full and there is insufficient lookahead,
- * move the upper half to the lower one to make room in the upper half.
- */
- if(more == -1) {
- /* Very unlikely, but possible on 16 bit machine if strstart == 0
- * and lookahead == 1 (input done one byte at time)
- */
- more--;
- } else if(zip_strstart >= zip_WSIZE + zip_MAX_DIST) {
- /* By the IN assertion, the window is not empty so we can't confuse
- * more == 0 with more == 64K on a 16 bit machine.
- */
- // Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM");
-
- // System.arraycopy(window, WSIZE, window, 0, WSIZE);
- for(n = 0; n < zip_WSIZE; n++)
- zip_window[n] = zip_window[n + zip_WSIZE];
-
- zip_match_start -= zip_WSIZE;
- zip_strstart -= zip_WSIZE; /* we now have strstart >= MAX_DIST: */
- zip_block_start -= zip_WSIZE;
-
- for(n = 0; n < zip_HASH_SIZE; n++) {
- m = zip_head1(n);
- zip_head2(n, m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL);
- }
- for(n = 0; n < zip_WSIZE; n++) {
- /* If n is not on any hash chain, prev[n] is garbage but
- * its value will never be used.
- */
- m = zip_prev[n];
- zip_prev[n] = (m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL);
- }
- more += zip_WSIZE;
- }
- // At this point, more >= 2
- if(!zip_eofile) {
- n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more);
- if(n <= 0)
- zip_eofile = true;
- else
- zip_lookahead += n;
- }
- }
-
- /* ==========================================================================
- * Processes a new input file and return its compressed length. This
- * function does not perform lazy evaluationof matches and inserts
- * new strings in the dictionary only for unmatched strings or for short
- * matches. It is used only for the fast compression options.
- */
- function zip_deflate_fast() {
- while(zip_lookahead != 0 && zip_qhead == null) {
- var flush; // set if current block must be flushed
-
- /* Insert the string window[strstart .. strstart+2] in the
- * dictionary, and set hash_head to the head of the hash chain:
- */
- zip_INSERT_STRING();
-
- /* Find the longest match, discarding those <= prev_length.
- * At this point we have always match_length < MIN_MATCH
- */
- if(zip_hash_head != zip_NIL &&
- zip_strstart - zip_hash_head <= zip_MAX_DIST) {
- /* To simplify the code, we prevent matches with the string
- * of window index 0 (in particular we have to avoid a match
- * of the string with itself at the start of the input file).
- */
- zip_match_length = zip_longest_match(zip_hash_head);
- /* longest_match() sets match_start */
- if(zip_match_length > zip_lookahead)
- zip_match_length = zip_lookahead;
- }
- if(zip_match_length >= zip_MIN_MATCH) {
- // check_match(strstart, match_start, match_length);
-
- flush = zip_ct_tally(zip_strstart - zip_match_start,
- zip_match_length - zip_MIN_MATCH);
- zip_lookahead -= zip_match_length;
-
- /* Insert new strings in the hash table only if the match length
- * is not too large. This saves time but degrades compression.
- */
- if(zip_match_length <= zip_max_lazy_match) {
- zip_match_length--; // string at strstart already in hash table
- do {
- zip_strstart++;
- zip_INSERT_STRING();
- /* strstart never exceeds WSIZE-MAX_MATCH, so there are
- * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
- * these bytes are garbage, but it does not matter since
- * the next lookahead bytes will be emitted as literals.
- */
- } while(--zip_match_length != 0);
- zip_strstart++;
- } else {
- zip_strstart += zip_match_length;
- zip_match_length = 0;
- zip_ins_h = zip_window[zip_strstart] & 0xff;
- // UPDATE_HASH(ins_h, window[strstart + 1]);
- zip_ins_h = ((zip_ins_h<<zip_H_SHIFT) ^ (zip_window[zip_strstart + 1] & 0xff)) & zip_HASH_MASK;
-
- //#if MIN_MATCH != 3
- // Call UPDATE_HASH() MIN_MATCH-3 more times
- //#endif
-
- }
- } else {
- /* No match, output a literal byte */
- flush = zip_ct_tally(0, zip_window[zip_strstart] & 0xff);
- zip_lookahead--;
- zip_strstart++;
- }
- if(flush) {
- zip_flush_block(0);
- zip_block_start = zip_strstart;
- }
-
- /* Make sure that we always have enough lookahead, except
- * at the end of the input file. We need MAX_MATCH bytes
- * for the next match, plus MIN_MATCH bytes to insert the
- * string following the next match.
- */
- while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
- zip_fill_window();
- }
- }
-
- function zip_deflate_better() {
- /* Process the input block. */
- while(zip_lookahead != 0 && zip_qhead == null) {
- /* Insert the string window[strstart .. strstart+2] in the
- * dictionary, and set hash_head to the head of the hash chain:
- */
- zip_INSERT_STRING();
-
- /* Find the longest match, discarding those <= prev_length.
- */
- zip_prev_length = zip_match_length;
- zip_prev_match = zip_match_start;
- zip_match_length = zip_MIN_MATCH - 1;
-
- if(zip_hash_head != zip_NIL &&
- zip_prev_length < zip_max_lazy_match &&
- zip_strstart - zip_hash_head <= zip_MAX_DIST) {
- /* To simplify the code, we prevent matches with the string
- * of window index 0 (in particular we have to avoid a match
- * of the string with itself at the start of the input file).
- */
- zip_match_length = zip_longest_match(zip_hash_head);
- /* longest_match() sets match_start */
- if(zip_match_length > zip_lookahead)
- zip_match_length = zip_lookahead;
-
- /* Ignore a length 3 match if it is too distant: */
- if(zip_match_length == zip_MIN_MATCH &&
- zip_strstart - zip_match_start > zip_TOO_FAR) {
- /* If prev_match is also MIN_MATCH, match_start is garbage
- * but we will ignore the current match anyway.
- */
- zip_match_length--;
- }
- }
- /* If there was a match at the previous step and the current
- * match is not better, output the previous match:
- */
- if(zip_prev_length >= zip_MIN_MATCH &&
- zip_match_length <= zip_prev_length) {
- var flush; // set if current block must be flushed
-
- // check_match(strstart - 1, prev_match, prev_length);
- flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match,
- zip_prev_length - zip_MIN_MATCH);
-
- /* Insert in hash table all strings up to the end of the match.
- * strstart-1 and strstart are already inserted.
- */
- zip_lookahead -= zip_prev_length - 1;
- zip_prev_length -= 2;
- do {
- zip_strstart++;
- zip_INSERT_STRING();
- /* strstart never exceeds WSIZE-MAX_MATCH, so there are
- * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
- * these bytes are garbage, but it does not matter since the
- * next lookahead bytes will always be emitted as literals.
- */
- } while(--zip_prev_length != 0);
- zip_match_available = 0;
- zip_match_length = zip_MIN_MATCH - 1;
- zip_strstart++;
- if(flush) {
- zip_flush_block(0);
- zip_block_start = zip_strstart;
- }
- } else if(zip_match_available != 0) {
- /* If there was no match at the previous position, output a
- * single literal. If there was a match but the current match
- * is longer, truncate the previous match to a single literal.
- */
- if(zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) {
- zip_flush_block(0);
- zip_block_start = zip_strstart;
- }
- zip_strstart++;
- zip_lookahead--;
- } else {
- /* There is no previous match to compare with, wait for
- * the next step to decide.
- */
- zip_match_available = 1;
- zip_strstart++;
- zip_lookahead--;
- }
-
- /* Make sure that we always have enough lookahead, except
- * at the end of the input file. We need MAX_MATCH bytes
- * for the next match, plus MIN_MATCH bytes to insert the
- * string following the next match.
- */
- while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
- zip_fill_window();
- }
- }
-
- function zip_init_deflate() {
- if(zip_eofile)
- return;
- zip_bi_buf = 0;
- zip_bi_valid = 0;
- zip_ct_init();
- zip_lm_init();
-
- zip_qhead = null;
- zip_outcnt = 0;
- zip_outoff = 0;
-
- if(zip_compr_level <= 3)
- {
- zip_prev_length = zip_MIN_MATCH - 1;
- zip_match_length = 0;
- }
- else
- {
- zip_match_length = zip_MIN_MATCH - 1;
- zip_match_available = 0;
- }
-
- zip_complete = false;
- }
-
- /* ==========================================================================
- * Same as above, but achieves better compression. We use a lazy
- * evaluation for matches: a match is finally adopted only if there is
- * no better match at the next window position.
- */
- function zip_deflate_internal(buff, off, buff_size) {
- var n;
-
- if(!zip_initflag)
- {
- zip_init_deflate();
- zip_initflag = true;
- if(zip_lookahead == 0) { // empty
- zip_complete = true;
- return 0;
- }
- }
-
- if((n = zip_qcopy(buff, off, buff_size)) == buff_size)
- return buff_size;
-
- if(zip_complete)
- return n;
-
- if(zip_compr_level <= 3) // optimized for speed
- zip_deflate_fast();
- else
- zip_deflate_better();
- if(zip_lookahead == 0) {
- if(zip_match_available != 0)
- zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff);
- zip_flush_block(1);
- zip_complete = true;
- }
- return n + zip_qcopy(buff, n + off, buff_size - n);
- }
-
- function zip_qcopy(buff, off, buff_size) {
- var n, i, j;
-
- n = 0;
- while(zip_qhead != null && n < buff_size)
- {
- i = buff_size - n;
- if(i > zip_qhead.len)
- i = zip_qhead.len;
- // System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i);
- for(j = 0; j < i; j++)
- buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j];
-
- zip_qhead.off += i;
- zip_qhead.len -= i;
- n += i;
- if(zip_qhead.len == 0) {
- var p;
- p = zip_qhead;
- zip_qhead = zip_qhead.next;
- zip_reuse_queue(p);
- }
- }
-
- if(n == buff_size)
- return n;
-
- if(zip_outoff < zip_outcnt) {
- i = buff_size - n;
- if(i > zip_outcnt - zip_outoff)
- i = zip_outcnt - zip_outoff;
- // System.arraycopy(outbuf, outoff, buff, off + n, i);
- for(j = 0; j < i; j++)
- buff[off + n + j] = zip_outbuf[zip_outoff + j];
- zip_outoff += i;
- n += i;
- if(zip_outcnt == zip_outoff)
- zip_outcnt = zip_outoff = 0;
- }
- return n;
- }
-
- /* ==========================================================================
- * Allocate the match buffer, initialize the various tables and save the
- * location of the internal file attribute (ascii/binary) and method
- * (DEFLATE/STORE).
- */
- function zip_ct_init() {
- var n; // iterates over tree elements
- var bits; // bit counter
- var length; // length value
- var code; // code value
- var dist; // distance index
-
- if(zip_static_dtree[0].dl != 0) return; // ct_init already called
-
- zip_l_desc.dyn_tree = zip_dyn_ltree;
- zip_l_desc.static_tree = zip_static_ltree;
- zip_l_desc.extra_bits = zip_extra_lbits;
- zip_l_desc.extra_base = zip_LITERALS + 1;
- zip_l_desc.elems = zip_L_CODES;
- zip_l_desc.max_length = zip_MAX_BITS;
- zip_l_desc.max_code = 0;
-
- zip_d_desc.dyn_tree = zip_dyn_dtree;
- zip_d_desc.static_tree = zip_static_dtree;
- zip_d_desc.extra_bits = zip_extra_dbits;
- zip_d_desc.extra_base = 0;
- zip_d_desc.elems = zip_D_CODES;
- zip_d_desc.max_length = zip_MAX_BITS;
- zip_d_desc.max_code = 0;
-
- zip_bl_desc.dyn_tree = zip_bl_tree;
- zip_bl_desc.static_tree = null;
- zip_bl_desc.extra_bits = zip_extra_blbits;
- zip_bl_desc.extra_base = 0;
- zip_bl_desc.elems = zip_BL_CODES;
- zip_bl_desc.max_length = zip_MAX_BL_BITS;
- zip_bl_desc.max_code = 0;
-
- // Initialize the mapping length (0..255) -> length code (0..28)
- length = 0;
- for(code = 0; code < zip_LENGTH_CODES-1; code++) {
- zip_base_length[code] = length;
- for(n = 0; n < (1<<zip_extra_lbits[code]); n++)
- zip_length_code[length++] = code;
- }
- // Assert (length == 256, "ct_init: length != 256");
-
- /* Note that the length 255 (match length 258) can be represented
- * in two different ways: code 284 + 5 bits or code 285, so we
- * overwrite length_code[255] to use the best encoding:
- */
- zip_length_code[length-1] = code;
-
- /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
- dist = 0;
- for(code = 0 ; code < 16; code++) {
- zip_base_dist[code] = dist;
- for(n = 0; n < (1<<zip_extra_dbits[code]); n++) {
- zip_dist_code[dist++] = code;
- }
- }
- // Assert (dist == 256, "ct_init: dist != 256");
- dist >>= 7; // from now on, all distances are divided by 128
- for( ; code < zip_D_CODES; code++) {
- zip_base_dist[code] = dist << 7;
- for(n = 0; n < (1<<(zip_extra_dbits[code]-7)); n++)
- zip_dist_code[256 + dist++] = code;
- }
- // Assert (dist == 256, "ct_init: 256+dist != 512");
-
- // Construct the codes of the static literal tree
- for(bits = 0; bits <= zip_MAX_BITS; bits++)
- zip_bl_count[bits] = 0;
- n = 0;
- while(n <= 143) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; }
- while(n <= 255) { zip_static_ltree[n++].dl = 9; zip_bl_count[9]++; }
- while(n <= 279) { zip_static_ltree[n++].dl = 7; zip_bl_count[7]++; }
- while(n <= 287) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; }
- /* Codes 286 and 287 do not exist, but we must include them in the
- * tree construction to get a canonical Huffman tree (longest code
- * all ones)
- */
- zip_gen_codes(zip_static_ltree, zip_L_CODES + 1);
-
- /* The static distance tree is trivial: */
- for(n = 0; n < zip_D_CODES; n++) {
- zip_static_dtree[n].dl = 5;
- zip_static_dtree[n].fc = zip_bi_reverse(n, 5);
- }
-
- // Initialize the first block of the first file:
- zip_init_block();
- }
-
- /* ==========================================================================
- * Initialize a new block.
- */
- function zip_init_block() {
- var n; // iterates over tree elements
-
- // Initialize the trees.
- for(n = 0; n < zip_L_CODES; n++) zip_dyn_ltree[n].fc = 0;
- for(n = 0; n < zip_D_CODES; n++) zip_dyn_dtree[n].fc = 0;
- for(n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0;
-
- zip_dyn_ltree[zip_END_BLOCK].fc = 1;
- zip_opt_len = zip_static_len = 0;
- zip_last_lit = zip_last_dist = zip_last_flags = 0;
- zip_flags = 0;
- zip_flag_bit = 1;
- }
-
- /* ==========================================================================
- * Restore the heap property by moving down the tree starting at node k,
- * exchanging a node with the smallest of its two sons if necessary, stopping
- * when the heap property is re-established (each father smaller than its
- * two sons).
- */
- function zip_pqdownheap(
- tree, // the tree to restore
- k) { // node to move down
- var v = zip_heap[k];
- var j = k << 1; // left son of k
-
- while(j <= zip_heap_len) {
- // Set j to the smallest of the two sons:
- if(j < zip_heap_len &&
- zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j]))
- j++;
-
- // Exit if v is smaller than both sons
- if(zip_SMALLER(tree, v, zip_heap[j]))
- break;
-
- // Exchange v with the smallest son
- zip_heap[k] = zip_heap[j];
- k = j;
-
- // And continue down the tree, setting j to the left son of k
- j <<= 1;
- }
- zip_heap[k] = v;
- }
-
- /* ==========================================================================
- * Compute the optimal bit lengths for a tree and update the total bit length
- * for the current block.
- * IN assertion: the fields freq and dad are set, heap[heap_max] and
- * above are the tree nodes sorted by increasing frequency.
- * OUT assertions: the field len is set to the optimal bit length, the
- * array bl_count contains the frequencies for each bit length.
- * The length opt_len is updated; static_len is also updated if stree is
- * not null.
- */
- function zip_gen_bitlen(desc) { // the tree descriptor
- var tree = desc.dyn_tree;
- var extra = desc.extra_bits;
- var base = desc.extra_base;
- var max_code = desc.max_code;
- var max_length = desc.max_length;
- var stree = desc.static_tree;
- var h; // heap index
- var n, m; // iterate over the tree elements
- var bits; // bit length
- var xbits; // extra bits
- var f; // frequency
- var overflow = 0; // number of elements with bit length too large
-
- for(bits = 0; bits <= zip_MAX_BITS; bits++)
- zip_bl_count[bits] = 0;
-
- /* In a first pass, compute the optimal bit lengths (which may
- * overflow in the case of the bit length tree).
- */
- tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap
-
- for(h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) {
- n = zip_heap[h];
- bits = tree[tree[n].dl].dl + 1;
- if(bits > max_length) {
- bits = max_length;
- overflow++;
- }
- tree[n].dl = bits;
- // We overwrite tree[n].dl which is no longer needed
-
- if(n > max_code)
- continue; // not a leaf node
-
- zip_bl_count[bits]++;
- xbits = 0;
- if(n >= base)
- xbits = extra[n - base];
- f = tree[n].fc;
- zip_opt_len += f * (bits + xbits);
- if(stree != null)
- zip_static_len += f * (stree[n].dl + xbits);
- }
- if(overflow == 0)
- return;
-
- // This happens for example on obj2 and pic of the Calgary corpus
-
- // Find the first bit length which could increase:
- do {
- bits = max_length - 1;
- while(zip_bl_count[bits] == 0)
- bits--;
- zip_bl_count[bits]--; // move one leaf down the tree
- zip_bl_count[bits + 1] += 2; // move one overflow item as its brother
- zip_bl_count[max_length]--;
- /* The brother of the overflow item also moves one step up,
- * but this does not affect bl_count[max_length]
- */
- overflow -= 2;
- } while(overflow > 0);
-
- /* Now recompute all bit lengths, scanning in increasing frequency.
- * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
- * lengths instead of fixing only the wrong ones. This idea is taken
- * from 'ar' written by Haruhiko Okumura.)
- */
- for(bits = max_length; bits != 0; bits--) {
- n = zip_bl_count[bits];
- while(n != 0) {
- m = zip_heap[--h];
- if(m > max_code)
- continue;
- if(tree[m].dl != bits) {
- zip_opt_len += (bits - tree[m].dl) * tree[m].fc;
- tree[m].fc = bits;
- }
- n--;
- }
- }
- }
-
- /* ==========================================================================
- * Generate the codes for a given tree and bit counts (which need not be
- * optimal).
- * IN assertion: the array bl_count contains the bit length statistics for
- * the given tree and the field len is set for all tree elements.
- * OUT assertion: the field code is set for all tree elements of non
- * zero code length.
- */
- function zip_gen_codes(tree, // the tree to decorate
- max_code) { // largest code with non zero frequency
- var next_code = new Array(zip_MAX_BITS+1); // next code value for each bit length
- var code = 0; // running code value
- var bits; // bit index
- var n; // code index
-
- /* The distribution counts are first used to generate the code values
- * without bit reversal.
- */
- for(bits = 1; bits <= zip_MAX_BITS; bits++) {
- code = ((code + zip_bl_count[bits-1]) << 1);
- next_code[bits] = code;
- }
-
- /* Check that the bit counts in bl_count are consistent. The last code
- * must be all ones.
- */
- // Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
- // "inconsistent bit counts");
- // Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
-
- for(n = 0; n <= max_code; n++) {
- var len = tree[n].dl;
- if(len == 0)
- continue;
- // Now reverse the bits
- tree[n].fc = zip_bi_reverse(next_code[len]++, len);
-
- // Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
- // n, (isgraph(n) ? n : ' '), len, tree[n].fc, next_code[len]-1));
- }
- }
-
- /* ==========================================================================
- * Construct one Huffman tree and assigns the code bit strings and lengths.
- * Update the total bit length for the current block.
- * IN assertion: the field freq is set for all tree elements.
- * OUT assertions: the fields len and code are set to the optimal bit length
- * and corresponding code. The length opt_len is updated; static_len is
- * also updated if stree is not null. The field max_code is set.
- */
- function zip_build_tree(desc) { // the tree descriptor
- var tree = desc.dyn_tree;
- var stree = desc.static_tree;
- var elems = desc.elems;
- var n, m; // iterate over heap elements
- var max_code = -1; // largest code with non zero frequency
- var node = elems; // next internal node of the tree
-
- /* Construct the initial heap, with least frequent element in
- * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
- * heap[0] is not used.
- */
- zip_heap_len = 0;
- zip_heap_max = zip_HEAP_SIZE;
-
- for(n = 0; n < elems; n++) {
- if(tree[n].fc != 0) {
- zip_heap[++zip_heap_len] = max_code = n;
- zip_depth[n] = 0;
- } else
- tree[n].dl = 0;
- }
-
- /* The pkzip format requires that at least one distance code exists,
- * and that at least one bit should be sent even if there is only one
- * possible code. So to avoid special checks later on we force at least
- * two codes of non zero frequency.
- */
- while(zip_heap_len < 2) {
- var xnew = zip_heap[++zip_heap_len] = (max_code < 2 ? ++max_code : 0);
- tree[xnew].fc = 1;
- zip_depth[xnew] = 0;
- zip_opt_len--;
- if(stree != null)
- zip_static_len -= stree[xnew].dl;
- // new is 0 or 1 so it does not have extra bits
- }
- desc.max_code = max_code;
-
- /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
- * establish sub-heaps of increasing lengths:
- */
- for(n = zip_heap_len >> 1; n >= 1; n--)
- zip_pqdownheap(tree, n);
-
- /* Construct the Huffman tree by repeatedly combining the least two
- * frequent nodes.
- */
- do {
- n = zip_heap[zip_SMALLEST];
- zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--];
- zip_pqdownheap(tree, zip_SMALLEST);
-
- m = zip_heap[zip_SMALLEST]; // m = node of next least frequency
-
- // keep the nodes sorted by frequency
- zip_heap[--zip_heap_max] = n;
- zip_heap[--zip_heap_max] = m;
-
- // Create a new node father of n and m
- tree[node].fc = tree[n].fc + tree[m].fc;
- // depth[node] = (char)(MAX(depth[n], depth[m]) + 1);
- if(zip_depth[n] > zip_depth[m] + 1)
- zip_depth[node] = zip_depth[n];
- else
- zip_depth[node] = zip_depth[m] + 1;
- tree[n].dl = tree[m].dl = node;
-
- // and insert the new node in the heap
- zip_heap[zip_SMALLEST] = node++;
- zip_pqdownheap(tree, zip_SMALLEST);
-
- } while(zip_heap_len >= 2);
-
- zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST];
-
- /* At this point, the fields freq and dad are set. We can now
- * generate the bit lengths.
- */
- zip_gen_bitlen(desc);
-
- // The field len is now set, we can generate the bit codes
- zip_gen_codes(tree, max_code);
- }
-
- /* ==========================================================================
- * Scan a literal or distance tree to determine the frequencies of the codes
- * in the bit length tree. Updates opt_len to take into account the repeat
- * counts. (The contribution of the bit length codes will be added later
- * during the construction of bl_tree.)
- */
- function zip_scan_tree(tree,// the tree to be scanned
- max_code) { // and its largest code of non zero frequency
- var n; // iterates over all tree elements
- var prevlen = -1; // last emitted length
- var curlen; // length of current code
- var nextlen = tree[0].dl; // length of next code
- var count = 0; // repeat count of the current code
- var max_count = 7; // max repeat count
- var min_count = 4; // min repeat count
-
- if(nextlen == 0) {
- max_count = 138;
- min_count = 3;
- }
- tree[max_code + 1].dl = 0xffff; // guard
-
- for(n = 0; n <= max_code; n++) {
- curlen = nextlen;
- nextlen = tree[n + 1].dl;
- if(++count < max_count && curlen == nextlen)
- continue;
- else if(count < min_count)
- zip_bl_tree[curlen].fc += count;
- else if(curlen != 0) {
- if(curlen != prevlen)
- zip_bl_tree[curlen].fc++;
- zip_bl_tree[zip_REP_3_6].fc++;
- } else if(count <= 10)
- zip_bl_tree[zip_REPZ_3_10].fc++;
- else
- zip_bl_tree[zip_REPZ_11_138].fc++;
- count = 0; prevlen = curlen;
- if(nextlen == 0) {
- max_count = 138;
- min_count = 3;
- } else if(curlen == nextlen) {
- max_count = 6;
- min_count = 3;
- } else {
- max_count = 7;
- min_count = 4;
- }
- }
- }
-
- /* ==========================================================================
- * Send a literal or distance tree in compressed form, using the codes in
- * bl_tree.
- */
- function zip_send_tree(tree, // the tree to be scanned
- max_code) { // and its largest code of non zero frequency
- var n; // iterates over all tree elements
- var prevlen = -1; // last emitted length
- var curlen; // length of current code
- var nextlen = tree[0].dl; // length of next code
- var count = 0; // repeat count of the current code
- var max_count = 7; // max repeat count
- var min_count = 4; // min repeat count
-
- /* tree[max_code+1].dl = -1; */ /* guard already set */
- if(nextlen == 0) {
- max_count = 138;
- min_count = 3;
- }
-
- for(n = 0; n <= max_code; n++) {
- curlen = nextlen;
- nextlen = tree[n+1].dl;
- if(++count < max_count && curlen == nextlen) {
- continue;
- } else if(count < min_count) {
- do { zip_SEND_CODE(curlen, zip_bl_tree); } while(--count != 0);
- } else if(curlen != 0) {
- if(curlen != prevlen) {
- zip_SEND_CODE(curlen, zip_bl_tree);
- count--;
- }
- // Assert(count >= 3 && count <= 6, " 3_6?");
- zip_SEND_CODE(zip_REP_3_6, zip_bl_tree);
- zip_send_bits(count - 3, 2);
- } else if(count <= 10) {
- zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree);
- zip_send_bits(count-3, 3);
- } else {
- zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree);
- zip_send_bits(count-11, 7);
- }
- count = 0;
- prevlen = curlen;
- if(nextlen == 0) {
- max_count = 138;
- min_count = 3;
- } else if(curlen == nextlen) {
- max_count = 6;
- min_count = 3;
- } else {
- max_count = 7;
- min_count = 4;
- }
- }
- }
-
- /* ==========================================================================
- * Construct the Huffman tree for the bit lengths and return the index in
- * bl_order of the last bit length code to send.
- */
- function zip_build_bl_tree() {
- var max_blindex; // index of last bit length code of non zero freq
-
- // Determine the bit length frequencies for literal and distance trees
- zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code);
- zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code);
-
- // Build the bit length tree:
- zip_build_tree(zip_bl_desc);
- /* opt_len now includes the length of the tree representations, except
- * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
- */
-
- /* Determine the number of bit length codes to send. The pkzip format
- * requires that at least 4 bit length codes be sent. (appnote.txt says
- * 3 but the actual value used is 4.)
- */
- for(max_blindex = zip_BL_CODES-1; max_blindex >= 3; max_blindex--) {
- if(zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break;
- }
- /* Update opt_len to include the bit length tree and counts */
- zip_opt_len += 3*(max_blindex+1) + 5+5+4;
- // Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
- // encoder->opt_len, encoder->static_len));
-
- return max_blindex;
- }
-
- /* ==========================================================================
- * Send the header for a block using dynamic Huffman trees: the counts, the
- * lengths of the bit length codes, the literal tree and the distance tree.
- * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
- */
- function zip_send_all_trees(lcodes, dcodes, blcodes) { // number of codes for each tree
- var rank; // index in bl_order
-
- // Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
- // Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
- // "too many codes");
- // Tracev((stderr, "\nbl counts: "));
- zip_send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
- zip_send_bits(dcodes-1, 5);
- zip_send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt
- for(rank = 0; rank < blcodes; rank++) {
- // Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
- zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3);
- }
-
- // send the literal tree
- zip_send_tree(zip_dyn_ltree,lcodes-1);
-
- // send the distance tree
- zip_send_tree(zip_dyn_dtree,dcodes-1);
- }
-
- /* ==========================================================================
- * Determine the best encoding for the current block: dynamic trees, static
- * trees or store, and output the encoded block to the zip file.
- */
- function zip_flush_block(eof) { // true if this is the last block for a file
- var opt_lenb, static_lenb; // opt_len and static_len in bytes
- var max_blindex; // index of last bit length code of non zero freq
- var stored_len; // length of input block
-
- stored_len = zip_strstart - zip_block_start;
- zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items
-
- // Construct the literal and distance trees
- zip_build_tree(zip_l_desc);
- // Tracev((stderr, "\nlit data: dyn %ld, stat %ld",
- // encoder->opt_len, encoder->static_len));
-
- zip_build_tree(zip_d_desc);
- // Tracev((stderr, "\ndist data: dyn %ld, stat %ld",
- // encoder->opt_len, encoder->static_len));
- /* At this point, opt_len and static_len are the total bit lengths of
- * the compressed block data, excluding the tree representations.
- */
-
- /* Build the bit length tree for the above two trees, and get the index
- * in bl_order of the last bit length code to send.
- */
- max_blindex = zip_build_bl_tree();
-
- // Determine the best encoding. Compute first the block length in bytes
- opt_lenb = (zip_opt_len +3+7)>>3;
- static_lenb = (zip_static_len+3+7)>>3;
-
- // Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
- // opt_lenb, encoder->opt_len,
- // static_lenb, encoder->static_len, stored_len,
- // encoder->last_lit, encoder->last_dist));
-
- if(static_lenb <= opt_lenb)
- opt_lenb = static_lenb;
- if(stored_len + 4 <= opt_lenb // 4: two words for the lengths
- && zip_block_start >= 0) {
- var i;
-
- /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
- * Otherwise we can't have processed more than WSIZE input bytes since
- * the last block flush, because compression would have been
- * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
- * transform a block into a stored block.
- */
- zip_send_bits((zip_STORED_BLOCK<<1)+eof, 3); /* send block type */
- zip_bi_windup(); /* align on byte boundary */
- zip_put_short(stored_len);
- zip_put_short(~stored_len);
-
- // copy block
- /*
- p = &window[block_start];
- for(i = 0; i < stored_len; i++)
- put_byte(p[i]);
- */
- for(i = 0; i < stored_len; i++)
- zip_put_byte(zip_window[zip_block_start + i]);
-
- } else if(static_lenb == opt_lenb) {
- zip_send_bits((zip_STATIC_TREES<<1)+eof, 3);
- zip_compress_block(zip_static_ltree, zip_static_dtree);
- } else {
- zip_send_bits((zip_DYN_TREES<<1)+eof, 3);
- zip_send_all_trees(zip_l_desc.max_code+1,
- zip_d_desc.max_code+1,
- max_blindex+1);
- zip_compress_block(zip_dyn_ltree, zip_dyn_dtree);
- }
-
- zip_init_block();
-
- if(eof != 0)
- zip_bi_windup();
- }
-
- /* ==========================================================================
- * Save the match info and tally the frequency counts. Return true if
- * the current block must be flushed.
- */
- function zip_ct_tally(
- dist, // distance of matched string
- lc) { // match length-MIN_MATCH or unmatched char (if dist==0)
- zip_l_buf[zip_last_lit++] = lc;
- if(dist == 0) {
- // lc is the unmatched char
- zip_dyn_ltree[lc].fc++;
- } else {
- // Here, lc is the match length - MIN_MATCH
- dist--; // dist = match distance - 1
- // Assert((ush)dist < (ush)MAX_DIST &&
- // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
- // (ush)D_CODE(dist) < (ush)D_CODES, "ct_tally: bad match");
-
- zip_dyn_ltree[zip_length_code[lc]+zip_LITERALS+1].fc++;
- zip_dyn_dtree[zip_D_CODE(dist)].fc++;
-
- zip_d_buf[zip_last_dist++] = dist;
- zip_flags |= zip_flag_bit;
- }
- zip_flag_bit <<= 1;
-
- // Output the flags if they fill a byte
- if((zip_last_lit & 7) == 0) {
- zip_flag_buf[zip_last_flags++] = zip_flags;
- zip_flags = 0;
- zip_flag_bit = 1;
- }
- // Try to guess if it is profitable to stop the current block here
- if(zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) {
- // Compute an upper bound for the compressed length
- var out_length = zip_last_lit * 8;
- var in_length = zip_strstart - zip_block_start;
- var dcode;
-
- for(dcode = 0; dcode < zip_D_CODES; dcode++) {
- out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]);
- }
- out_length >>= 3;
- // Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
- // encoder->last_lit, encoder->last_dist, in_length, out_length,
- // 100L - out_length*100L/in_length));
- if(zip_last_dist < parseInt(zip_last_lit/2) &&
- out_length < parseInt(in_length/2))
- return true;
- }
- return (zip_last_lit == zip_LIT_BUFSIZE-1 ||
- zip_last_dist == zip_DIST_BUFSIZE);
- /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
- * on 16 bit machines and because stored blocks are restricted to
- * 64K-1 bytes.
- */
- }
-
- /* ==========================================================================
- * Send the block data compressed using the given Huffman trees
- */
- function zip_compress_block(
- ltree, // literal tree
- dtree) { // distance tree
- var dist; // distance of matched string
- var lc; // match length or unmatched char (if dist == 0)
- var lx = 0; // running index in l_buf
- var dx = 0; // running index in d_buf
- var fx = 0; // running index in flag_buf
- var flag = 0; // current flags
- var code; // the code to send
- var extra; // number of extra bits to send
-
- if(zip_last_lit != 0) do {
- if((lx & 7) == 0)
- flag = zip_flag_buf[fx++];
- lc = zip_l_buf[lx++] & 0xff;
- if((flag & 1) == 0) {
- zip_SEND_CODE(lc, ltree); /* send a literal byte */
- // Tracecv(isgraph(lc), (stderr," '%c' ", lc));
- } else {
- // Here, lc is the match length - MIN_MATCH
- code = zip_length_code[lc];
- zip_SEND_CODE(code+zip_LITERALS+1, ltree); // send the length code
- extra = zip_extra_lbits[code];
- if(extra != 0) {
- lc -= zip_base_length[code];
- zip_send_bits(lc, extra); // send the extra length bits
- }
- dist = zip_d_buf[dx++];
- // Here, dist is the match distance - 1
- code = zip_D_CODE(dist);
- // Assert (code < D_CODES, "bad d_code");
-
- zip_SEND_CODE(code, dtree); // send the distance code
- extra = zip_extra_dbits[code];
- if(extra != 0) {
- dist -= zip_base_dist[code];
- zip_send_bits(dist, extra); // send the extra distance bits
- }
- } // literal or match pair ?
- flag >>= 1;
- } while(lx < zip_last_lit);
-
- zip_SEND_CODE(zip_END_BLOCK, ltree);
- }
-
- /* ==========================================================================
- * Send a value on a given number of bits.
- * IN assertion: length <= 16 and value fits in length bits.
- */
- var zip_Buf_size = 16; // bit size of bi_buf
- function zip_send_bits(
- value, // value to send
- length) { // number of bits
- /* If not enough room in bi_buf, use (valid) bits from bi_buf and
- * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
- * unused bits in value.
- */
- if(zip_bi_valid > zip_Buf_size - length) {
- zip_bi_buf |= (value << zip_bi_valid);
- zip_put_short(zip_bi_buf);
- zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid));
- zip_bi_valid += length - zip_Buf_size;
- } else {
- zip_bi_buf |= value << zip_bi_valid;
- zip_bi_valid += length;
- }
- }
-
- /* ==========================================================================
- * Reverse the first len bits of a code, using straightforward code (a faster
- * method would use a table)
- * IN assertion: 1 <= len <= 15
- */
- function zip_bi_reverse(
- code, // the value to invert
- len) { // its bit length
- var res = 0;
- do {
- res |= code & 1;
- code >>= 1;
- res <<= 1;
- } while(--len > 0);
- return res >> 1;
- }
-
- /* ==========================================================================
- * Write out any remaining bits in an incomplete byte.
- */
- function zip_bi_windup() {
- if(zip_bi_valid > 8) {
- zip_put_short(zip_bi_buf);
- } else if(zip_bi_valid > 0) {
- zip_put_byte(zip_bi_buf);
- }
- zip_bi_buf = 0;
- zip_bi_valid = 0;
- }
-
- function zip_qoutbuf() {
- if(zip_outcnt != 0) {
- var q, i;
- q = zip_new_queue();
- if(zip_qhead == null)
- zip_qhead = zip_qtail = q;
- else
- zip_qtail = zip_qtail.next = q;
- q.len = zip_outcnt - zip_outoff;
- // System.arraycopy(zip_outbuf, zip_outoff, q.ptr, 0, q.len);
- for(i = 0; i < q.len; i++)
- q.ptr[i] = zip_outbuf[zip_outoff + i];
- zip_outcnt = zip_outoff = 0;
- }
- }
-
- return function deflate(str, level) {
- var i, j;
-
- zip_deflate_data = str;
- zip_deflate_pos = 0;
- if(typeof level == "undefined")
- level = zip_DEFAULT_LEVEL;
- zip_deflate_start(level);
-
- var buff = new Array(1024);
- var aout = [];
- while((i = zip_deflate_internal(buff, 0, buff.length)) > 0) {
- var cbuf = new Array(i);
- for(j = 0; j < i; j++){
- cbuf[j] = String.fromCharCode(buff[j]);
- }
- aout[aout.length] = cbuf.join("");
- }
- zip_deflate_data = null; // G.C.
- return aout.join("");
- };
-
- })();
-
- onmessage = function worker(m) {
- postMessage(deflate(m.data, 9));
- };
-
- onconnect = function sharedWorker(e) {
- var port = e.ports[0];
- port.onmessage = function(m) {
- port.postMessage(deflate(m.data, 9));
- };
- };
-
|