#!/usr/bin/env python
|
|
# coding: utf8
|
|
|
|
""" Unit testing for Separator class. """
|
|
|
|
__email__ = 'spleeter@deezer.com'
|
|
__author__ = 'Deezer Research'
|
|
__license__ = 'MIT License'
|
|
|
|
from os import makedirs
|
|
from os.path import join
|
|
from tempfile import TemporaryDirectory
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from spleeter.__main__ import evaluate
|
|
from spleeter.audio.adapter import AudioAdapter
|
|
|
|
BACKENDS = ['tensorflow', 'librosa']
|
|
TEST_CONFIGURATIONS = {el: el for el in BACKENDS}
|
|
|
|
res_4stems = {
|
|
'vocals': {
|
|
'SDR': 3.25e-05,
|
|
'SAR': -11.153575,
|
|
'SIR': -1.3849,
|
|
'ISR': 2.75e-05
|
|
},
|
|
'drums': {
|
|
'SDR': -0.079505,
|
|
'SAR': -15.7073575,
|
|
'SIR': -4.972755,
|
|
'ISR': 0.0013575
|
|
},
|
|
'bass': {
|
|
'SDR': 2.5e-06,
|
|
'SAR': -10.3520575,
|
|
'SIR': -4.272325,
|
|
'ISR': 2.5e-06
|
|
},
|
|
'other': {
|
|
'SDR': -1.359175,
|
|
'SAR': -14.7076775,
|
|
'SIR': -4.761505,
|
|
'ISR': -0.01528
|
|
}
|
|
}
|
|
|
|
|
|
def generate_fake_eval_dataset(path):
|
|
"""
|
|
generate fake evaluation dataset
|
|
"""
|
|
aa = AudioAdapter.default()
|
|
n_songs = 2
|
|
fs = 44100
|
|
duration = 3
|
|
n_channels = 2
|
|
rng = np.random.RandomState(seed=0)
|
|
for song in range(n_songs):
|
|
song_path = join(path, 'test', f'song{song}')
|
|
makedirs(song_path, exist_ok=True)
|
|
for instr in ['mixture', 'vocals', 'bass', 'drums', 'other']:
|
|
filename = join(song_path, f'{instr}.wav')
|
|
data = rng.rand(duration*fs, n_channels)-0.5
|
|
aa.save(filename, data, fs)
|
|
|
|
|
|
@pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
|
|
def test_evaluate(backend):
|
|
with TemporaryDirectory() as dataset:
|
|
with TemporaryDirectory() as evaluation:
|
|
generate_fake_eval_dataset(dataset)
|
|
metrics = evaluate(
|
|
adapter='spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter',
|
|
output_path=evaluation,
|
|
stft_backend=backend,
|
|
params_filename='spleeter:4stems',
|
|
mus_dir=dataset,
|
|
mwf=False,
|
|
verbose=False)
|
|
for instrument, metric in metrics.items():
|
|
for m, value in metric.items():
|
|
assert np.allclose(
|
|
np.median(value),
|
|
res_4stems[instrument][m],
|
|
atol=1e-3)
|