Non puoi selezionare più di 25 argomenti Gli argomenti devono iniziare con una lettera o un numero, possono includere trattini ('-') e possono essere lunghi fino a 35 caratteri.

221 righe
5.9 KiB

import math
import matplotlib.pyplot as plt
import librosa.display
import numpy as np
# binary search
import pygame
def bin_search(arr, target):
index = int(len(arr) / 2)
min_index = 0
max_index = len(arr) - 1
found = False
if target < arr[0]:
return 0
if target > arr[len(arr) - 1]:
return len(arr) - 1
while not found:
if min_index == len(arr) - 2:
return len(arr) - 1
if arr[index] < target < arr[index + 1] or arr[index] == target:
return index
if arr[index] > target:
max_index = index
else:
min_index = index
index = int((min_index + max_index) / 2)
def rotate(xy, theta):
# https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions
cos_theta, sin_theta = math.cos(theta), math.sin(theta)
return (
xy[0] * cos_theta - xy[1] * sin_theta,
xy[0] * sin_theta + xy[1] * cos_theta
)
def translate(xy, offset):
return xy[0] + offset[0], xy[1] + offset[1]
def clamp(min_value, max_value, value):
if value < min_value:
return min_value
if value > max_value:
return max_value
return value
class AudioAnalyzer:
def __init__(self):
self.frequencies_index_ratio = 0 # array for frequencies
self.time_index_ratio = 0 # array of time periods
self.spectrogram = None # a matrix that contains decibel values according to frequency and time indexes
def load(self, filename):
time_series, sample_rate = librosa.load(filename) # getting information from the file
# getting a matrix which contains amplitude values according to frequency and time indexes
stft = np.abs(librosa.stft(time_series, hop_length=512, n_fft=2048*4))
self.spectrogram = librosa.amplitude_to_db(stft, ref=np.max) # converting the matrix to decibel matrix
frequencies = librosa.core.fft_frequencies(n_fft=2048*4) # getting an array of frequencies
# getting an array of time periodic
times = librosa.core.frames_to_time(np.arange(self.spectrogram.shape[1]), sr=sample_rate, hop_length=512, n_fft=2048*4)
self.time_index_ratio = len(times)/times[len(times) - 1]
self.frequencies_index_ratio = len(frequencies)/frequencies[len(frequencies)-1]
def show(self):
librosa.display.specshow(self.spectrogram,
y_axis='log', x_axis='time')
plt.title('spectrogram')
plt.colorbar(format='%+2.0f dB')
plt.tight_layout()
plt.show()
def get_decibel(self, target_time, freq):
return self.spectrogram[int(freq*self.frequencies_index_ratio)][int(target_time*self.time_index_ratio)]
# returning the current decibel according to the indexes which found by binary search
# return self.spectrogram[bin_search(self.frequencies, freq), bin_search(self.times, target_time)]
def get_decibel_array(self, target_time, freq_arr):
arr = []
for f in freq_arr:
arr.append(self.get_decibel(target_time,f))
return arr
class AudioBar:
def __init__(self, x, y, freq, color, width=50, min_height=10, max_height=100, min_decibel=-80, max_decibel=0):
self.x, self.y, self.freq = x, y, freq
self.color = color
self.width, self.min_height, self.max_height = width, min_height, max_height
self.height = min_height
self.min_decibel, self.max_decibel = min_decibel, max_decibel
self.__decibel_height_ratio = (self.max_height - self.min_height)/(self.max_decibel - self.min_decibel)
def update(self, dt, decibel):
desired_height = decibel * self.__decibel_height_ratio + self.max_height
speed = (desired_height - self.height)/0.1
self.height += speed * dt
self.height = clamp(self.min_height, self.max_height, self.height)
def render(self, screen):
pygame.draw.rect(screen, self.color, (self.x, self.y + self.max_height - self.height, self.width, self.height))
class AverageAudioBar(AudioBar):
def __init__(self, x, y, rng, color, width=50, min_height=10, max_height=100, min_decibel=-80, max_decibel=0):
super().__init__(x, y, 0, color, width, min_height, max_height, min_decibel, max_decibel)
self.rng = rng
self.avg = 0
def update_all(self, dt, time, analyzer):
self.avg = 0
for i in self.rng:
self.avg += analyzer.get_decibel(time, i)
self.avg /= len(self.rng)
self.update(dt, self.avg)
class RotatedAverageAudioBar(AverageAudioBar):
def __init__(self, x, y, rng, color, angle=0, width=50, min_height=10, max_height=100, min_decibel=-80, max_decibel=0):
super().__init__(x, y, 0, color, width, min_height, max_height, min_decibel, max_decibel)
self.rng = rng
self.rect = None
self.angle = angle
def render(self, screen):
pygame.draw.polygon(screen, self.color, self.rect.points)
def render_c(self, screen, color):
pygame.draw.polygon(screen, color, self.rect.points)
def update_rect(self):
self.rect = Rect(self.x, self.y, self.width, self.height)
self.rect.rotate(self.angle)
class Rect:
def __init__(self,x ,y, w, h):
self.x, self.y, self.w, self.h = x,y, w, h
self.points = []
self.origin = [self.w/2,0]
self.offset = [self.origin[0] + x, self.origin[1] + y]
self.rotate(0)
def rotate(self, angle):
template = [
(-self.origin[0], self.origin[1]),
(-self.origin[0] + self.w, self.origin[1]),
(-self.origin[0] + self.w, self.origin[1] - self.h),
(-self.origin[0], self.origin[1] - self.h)
]
self.points = [translate(rotate(xy, math.radians(angle)), self.offset) for xy in template]
def draw(self,screen):
pygame.draw.polygon(screen, (255,255, 0), self.points)