
WAVE-U-NET: A MULTI-SCALE NEURAL NETWORK FOR
END-TO-END AUDIO SOURCE SEPARATION

Daniel Stoller

Queen Mary University of
London d.stoller@qmul.ac.uk

Sebastian Ewert

Spotify
sewert@spotify.com

Simon Dixon

Queen Mary University of
London s.e.dixon@qmul.ac.uk

ABSTRACT

Models for audio source separation usually operate on the

magnitude spectrum, which ignores phase information and

makes separation performance dependant on hyper-

parameters for the spectral front-end. Therefore, we

investigate end-to-end source separation in the time-domain,

which allows modelling phase information and avoids fixed

spectral transformations. Due to high sampling rates for

audio, employing a long temporal input context on the

sample level is difficult, but required for high quality

separation results because of long-range temporal

correlations. In this context, we propose the Wave-U-Net, an

adaptation of the U-Net to the one-dimensional time domain,

which repeatedly resamples feature maps to compute and

combine features at different time scales. We introduce

further architectural improvements, including an output layer

that enforces source additivity, an upsampling technique and

a context-aware prediction framework to reduce output

artifacts. Experiments for singing voice separation indicate

that our architecture yields a performance comparable to a

state-of-the-art spectrogram-based U-Net architecture, given

the same data. Finally, we reveal a problem with outliers in

the currently used SDR evaluation metrics and suggest

reporting rank-based statistics to alleviate this problem.

1. INTRODUCTION

Current methods for audio source separation almost

exclusively operate on spectrogram representations of the

audio signals [6, 7], as they allow for direct access to

components in time and frequency. In particular, after

applying a short-time Fourier transform (STFT) to the input

mixture signal, the complex-valued spectrogram is split into

its magnitude and phase components. Then only the

magnitudes are input to a parametric model, which returns

estimated spectrogram magnitudes for the individual sound

sources. To generate corresponding audio signals, these

magnitudes are combined with the mixture phase and then

converted with an inverse STFT to the time domain.

Optionally, the phase can be recovered for each source

individually using the Griffin-Lim algorithm [5].

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: Daniel Stoller, Sebastian Ewert, Simon Dixon. “Wave- U-
Net: A Multi-Scale Neural Network for End-to-End Audio Source

Separation”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

This approach has several limitations. Firstly, the STFT

output depends on many parameters, such as the size and

overlap of audio frames, which can affect the time and

frequency resolution. Ideally, these parameters should be

optimised in conjunction with the parameters of the separation

model to maximise performance for a particular separation

task. In practice, however, the transform parameters are fixed

to specific values. Secondly, since the separation model does

not estimate the source phase, it is often assumed to be equal

to the mixture phase, which is incorrect for overlapping

partials. Alternatively, the Griffin- Lim algorithm can be

applied to find an approximation to a signal whose

magnitudes are equal to the estimated ones, but this is slow

and often no such signal exists [8]. Lastly, the mixture phase

is ignored in the estimation of sources, which can potentially

limit the performance. Thus, it would be desirable for the

separation model to learn to estimate the source signals

including their phase directly.

As an approach to tackle the above problems, several audio

processing models were recently proposed that operate directly

on time-domain audio signals, including speech denoising as a

task related to general audio source separation [1,16,18].

Inspired by these first results, we investigate in this paper the

potential of fully end-to-end time-domain separation systems in

the face of unresolved challenges. In particular, it is not clear if

such a system will be able to deal effectively with the very

long-range temporal dependencies present in audio due to its

high sampling rate. Further, it is not obvious upfront whether

the additional phase information will indeed be beneficial for

the task, or whether the noisy phase might be detrimental for

the learning dynamics in such a system. Overall, our

contributions in this paper can be summarised as follows.

• We propose the Wave-U-Net, a one-dimensional
adaptation of the U-Net architecture [7, 19], which
separates sources directly in the time domain and can
take large temporal contexts into account.

• We show a way to provide the model with additional
input context to avoid artifacts at the boundaries of
output windows, in contrast to previous work [7,16].

• We replace strided transposed convolution used in
previous work [7, 16] for upsampling feature maps
with linear interpolation followed by a normal
convolution to avoid artifacts.

This work was partially funded by EPSRC grant

EP/L01632X/1. Implementation available at
https://github.com/f90/ Wave-U-Net

c Daniel Stoller, Sebastian Ewert, Simon Dixon. Licensed

a
rX

iv
:1

8
0
6
.0

3
1

8
5

v
1

 [
c
s.

S
D

]
8

 J
u

n
 2

0
1
8

Figure 1. Our proposed Wave-U-Net with K sources and L layers.
With our difference output layer, the K-th source prediction is the
difference between the mixture and the sum of the other sources.

• The Wave-U-Net achieves good multi-instrument and
singing voice separation, the latter of which compares
favourably to our re-implementation of the state-of-the-
art network architecture [7], which we train under
comparable settings.

• Since the Wave-U-Net can process multi-channel audio,
we compare stereo with mono source separation
performance

• We highlight an issue with the commonly used Signal- to-
Distortion ratio evaluation metric, and propose a work-
around.

It should be noted that we expect the current state of the art
model as presented in [7] to yield higher separation quality
than what we report here, as the training dataset used in [7] is
well-designed, highly unbiased and considerably larger.
However, we believe that our comparison with a re-
implementation trained under similar conditions might be
indicative of relative performance improvements.

2. RELATED WORK

To alleviate the problem of fixed spectral representations

widely used in previous work [6, 11, 13, 14, 20, 23], an

adaptive front-end for spectrogram computation was

developed [24] that is trained jointly with the separation

network, which operates on the resulting magnitude

spectrogram. Despite comparatively increased performance,

the model does not exploit the mixture phase for better source

magnitude predictions and also does not output the source

phase, so the mixture phase has to be used for source signal

reconstruction, both of which limit performance.

To our knowledge, only the TasNet [12] and MRCAE [4]
systems tackle the general problem of audio source separation
in the time domain. The TasNet performs a decomposition of
the signal into a set of basis signals and weights,

and then creates a mask over the weights which are finally
used to reconstruct the source signals. The model is shown to
work for a speech separation task. However, the work makes
conceptual trade-offs to allow for low-latency applications,
while we focus on offline application, allowing us to exploit a
large amount of contextual information.

The multi-resolution convolutional auto-encoder (MR-

CAE) [4] uses two layers of convolution and transposed

convolution each. The authors argue the different

convolutional filter sizes detect audio frequencies with

different resolutions, but they work only on one time

resolution (that of the input), since the network does not

perform any resampling. Since input and output consist of

only 1025 audio samples (equivalent to 23 ms), it can only

exploit very little context information. Furthermore, at test

time, output segments are overlapped using a regular spacing

and then combined, which differs from how the network is

trained. This mismatch and the small context could hurt

performance and also explain why the provided sound

examples exhibit many artifacts.

For the purpose of speech enhancement and denoising, the

SEGAN [16] was developed, employing a neural network

with an encoder and decoder pathway that successively halves

and doubles the resolution of feature maps in each layer,

respectively, and features skip connections between encoder

and decoder layers. While we use a similar architecture, we

rectify the issue of aliasing artifacts in the generated output

when using strided transposed convolutions as shown by [15].

Furthermore, the model cannot predict audio samples close to

its border output well since it is given no additional input

context, which is an issue we address using convolutions with

proper padding. It is also not clear if the model’s performance

can transfer to other and more challenging audio source

separation tasks.

The Wavenet [1] was adapted for speech denoising [18] to

have a non-causal conditional input and a parallel output of

samples for each prediction and is based on the repeated

application of dilated convolutions with exponentially

increasing dilation factors to factor in context information.

While this architecture is very parameter-efficient, memory

consumption is high since each feature map resulting from a

dilated convolution still has the original audio’s sampling rate

as resolution.

In contrast, our approach calculates the longer-term
dependencies based on feature maps with more features and
increasingly lower resolution. This saves memory and en-
ables a large number of high-level features, which arguably do
not need sample-level resolution to be useful, such as
instrument activity, or the position in the current measure.

3. THE WAVE-U-NET MODEL

Our goal is to separate a mixture waveform M ∈ [−1,
1]Lm× C into K source waveforms S1, . . . , SK with Sk ∈ [−1,
1]L

s
× C for all k ∈ {1, . . . , K}, C as the number of audio

channels and Lm and Ls as the respective numbers of audio
samples. For model variants with extra input context, we have
Lm > Ls and make predictions for the centre part of the input.

Source 1 output Source K-1 output

...
Mixture audio

1D Convolution, Size 1
Crop and concat

1D Convolution, Size 15 1D Convolution, Size 5

Crop and concat
Downsampling

Downsampling block 1
Upsampling

Upsampling block 1

Downsampling block 2 Upsampling block 2
Crop and concat

... ...

Downsampling block L Upsampling block L
Crop and concat

1D Convolution, Size 15

Block Operation Shape

Input (16384, 1)

DS, repeated for i
= 1, . . . , L

Conv1D(Fc · i, fd)
Decimate (4, 288)

Conv1D(Fc · (L + 1), fd) (4, 312)

US, repeated for i
= L, . . . , 1

Upsample
Concat(DS block i)
Conv1D(Fc · i, fu) (16834, 24)

Concat(Input)
Conv1D(K, 1)

(16834, 25)
(16834, 2)

Table 1. Block diagram of the base architecture. Shapes describe the
final output after potential repeated application of blocks, for the
example of model M1, and denote the number of time steps and
feature channels, in that order. DS block i refers to the output before
decimation. Note that the US blocks are applied in reverse order, from
level L to 1.

3.1 The base architecture

A diagram of the Wave-U-Net architecture is shown in

Figure 1. It computes an increasing number of higher-level

features on coarser time scales using downsampling (DS)

blocks. These features are combined with the earlier

computed local, high-resolution features using upsampling

(US) blocks, yielding multi-scale features which are used for

making predictions. The network has L levels in total, with

each successive level operating at half the time resolution as

the previous one. For K sources to be estimated, the model

returns predictions in the interval (−1, 1), one for each source

audio sample.

The detailed architecture is shown in Table 1.

Conv1D(x,y) denotes a 1D convolution with x filters of size

y. It includes zero-padding for the base architecture, and is

followed by a LeakyReLU activation (except for the final

one, which uses tanh). Decimate discards features for every

other time step to halve the time resolution. Upsample

performs upsampling in the time direction by a factor of two,

for which we use linear interpolation (see Section 3.1.1 for

details). Concat(x) concatenates the current, high-level

features with more local features x. In extensions of the base

architecture (see below), where Conv1D does not involve

zero-padding, x is centre-cropped first so it has the same

number of time steps as the current layer.

3.1.1 Avoiding aliasing artifacts due to upsampling

Many related approaches use transposed convolutions with
strides to upsample feature maps [7,16]. This can introduce
aliasing effects in the output, as shown for the case of image
generation networks [15]. In initial tests, we also found
artifacts when using such convolutions as upsampling blocks in

our Wave-U-Net model in the form of high-frequency buzzing
noise.

Transposed convolutions with a filter size of k and a stride

of x > 1 can be viewed as convolutions applied to feature

maps padded with x−1 zeros between each original value [2].

We suspect that the interleaving with zeros without

subsequent low-pass filtering introduces high-frequency

patterns into the feature maps, shown symbolically in Figure

2, which leads to high-frequency noise in the final out-put as

well. Instead of transposed strided convolutions, we thus

perform linear interpolation for upsampling, which ensures

temporal continuity in the feature space, followed by a normal

convolution. In initial tests, we did not observe

Figure 2. a) Common model (e.g. [7]) with an even number of inputs
(grey) which are zero-padded (black) before convolving, creating
artifacts at the borders (dark colours). After decimation, a transposed
convolution with stride 2 is shown here as upsampling by zero-
padding intermediate and border values followed by normal
convolution, which likely creates high-frequency artifacts in the
output. b) Our model with proper input context and linear
interpolation for upsampling from Section 3.2.2 does not use zero-
padding. The number of features is kept uneven, so that upsampling
does not require extrapolating values (red arrow). Although the
output is smaller, artifacts are avoided.

any high-frequency sound artifacts in the output with this
technique and achieved very similar performance.

3.2 Architectural improvements

The previous Section described the baseline variant of the
Wave-U-Net. In the following, we will describe a set of
architectural improvements for the Wave-U-Net designed to
increase model performance.

3.2.1 Difference output layer

Our baseline model outputs one source estimate for each of K

sources by independently applying K convolutional filters

followed by a tanh non-linearity to the last feature map. In the

separation tasks we consider, the mixture signal is the sum of

its source signal components: M ≈PKj=1 S j. Since our baseline

model is not constrained in this fashion, it has to learn this rule

approximately to avoid highly improbable outputs, which could

slow down learning and reduce performance. Therefore, we use

a difference output layer to constrain the outputs Sˆj , enforcing

PKj=1 Sˆj = M: only K − 1 convolutional filters with a size of 1

are applied to the last feature map of the network, followed by

a tanh non-linearity, to estimate the first K − 1 source signals.

The last source is then simply computed as SˆK = M − PK−1

j=1Sˆj .

This type of output was also used for speech denoising in

[18] as part of an “energy-conserving” loss, and a similar idea

can be found very commonly in spectrogram- based source

separation in the form of masks that distribute the energy of

the input mixture magnitudes to the output sources. We

investigate the impact of introducing this layer and its

additivity assumption, since it depends on the extent to which

this additivity property is satisfied by the data.

Convolution

Decimation

Upsampling

Convolution

?

a) b)

3.2.2 Prediction with proper input context and resampling

In previous work [4,7,16], the input and the feature maps are

padded with zeros before convolving, so that the resulting

feature map does not change in its dimension, as shown in

Figure 2a. This simplifies the network’s implementation,

since the input and output dimensions are the same. Zero-

padding audio or spectrogram input this way effectively

extends the input using silence at the beginning and end.

However, taken from a random position in a full audio signal,

the information at the boundary becomes artificial, i.e. the

temporal context for this excerpt is given in the full audio

signal but is ignored and assumed to be silent. Without

proper context information, the network thus has difficulty

predicting output values near the beginning and end of the

sequence. As a result, simply concatenating the outputs as

non-overlapping segments at test time to obtain the

prediction for a full audio signal can create audible artifacts

at the segment borders, as neighbouring outputs can be

inconsistent when they are generated without correct context

information. In Section 5.2, we investigate this behaviour in

practice.

As a solution, we employ convolutions without implicit
padding and instead provide a mixture input larger than the
size of the output prediction, so that the convolutions are
computed on the correct audio context (see Figure 2b). Since
this reduces the feature map sizes, we constrain the possible

output sizes of the network so that feature maps are always
large enough for the following convolution.

Further, when resampling feature maps, feature dimensions

are often exactly halved or doubled [7,16], as shown in Figure

2a for transposed strided convolution. However, this

necessarily involves extrapolating at least one value at a

border, which can again introduce artifacts. Instead, we

interpolate only between known neighbouring values and keep

the very first and last entries, producing 2n − 1 entries from n

or vice versa, as shown in Figure 2b. To recover the

intermediate values after decimation, while keeping border

values the same, we ensure that feature maps have odd

dimensionality.

3.2.3 Stereo channels

To accommodate for multi-channel input with C channels,

we simply change the input M from an Lm × 1 to an Lm × C

matrix. Since the second dimension is treated as a feature

channel, the first convolution of the network takes into

account all input channels. For multi-channel output with C

channels, we modify the output component to have K

independent convolutional layers with filter size 1 and C

filters each. With a difference output layer, we only use K −
1 such convolutional layers. We use this simple approach

with C = 2 to perform experiments with stereo recordings and

investigate the degree of improvement in source separation

metrics when using stereo instead of mono estimation.

3.2.4 Learned upsampling for Wave-U-Net

Linear interpolation for upsampling is simple, parameterless
and encourages feature continuity. However, it may be
restricting the network capacity too much. Perhaps, the
feature spaces used in these feature maps are not structured

so that a linear interpolation between two points in feature

space is a useful point on its own, so that a learned

upsampling could further enhance performance. To this end,

we propose the learned upsampling layer. For a given F × n

feature map with n time steps, we compute an interpolated

feature ft+0.5 ∈ RF for pairs of neighbouring features ft, ft+1 ∈
RF using parameters w ∈ RF and the sigmoid function σ to

constrain each wi ∈ w to the [0, 1] interval:

This can be implemented as a 1D convolution across time
with F filters of size two and no padding with a properly
constrained matrix. The learned interpolation layer can be
viewed as a generalisation of simple linear interpolation,
since it allows convex combinations of features with weights
other than 0.5.

4. EXPERIMENTS

We evaluate the performance of our models on two tasks:
Singing voice separation and music separation with bass,
drums, guitar, vocals and “other” instruments as categories, as
defined by the SiSec separation campaign [10].

4.1 Datasets

75 tracks from the training partition of the MUSDB [17]
multi-track database are randomly assigned to our training
set, and the remaining 25 tracks form the validation set,
which is used for early stopping. Final performance is
evaluated on the MUSDB test partition comprised of 50
songs. For singing voice separation, we also add the whole

CCMixter database [9] to the training set.

As data augmentation for both tasks, we multiply source
signals with a factor chosen uniformly from the interval [0.7,
1.0] and set the input mixture as the sum of source signals. No
further data preprocessing is performed, only a conversion to
mono (except for stereo models) and down-sampling to 22050
Hz.

4.2 Training procedure

During training, audio excerpts are sampled randomly and

inputs padded accordingly for models with input context. As

loss, we use the mean squared error (MSE) over all source

output samples in a batch. We use the ADAM optimizer with

learning rate 0.0001, decay rates β1 = 0.9 and β2 = 0.999 and

a batch size of 16. We define 2000 iterations as one epoch,

and perform early stopping after 20 epochs of no

improvement on the validation set, measured by the MSE loss.

Afterwards, the last model is fine-tuned further, with the batch

size doubled and the learning rate lowered to 0.00001, again

until 20 epochs without improvement in validation loss.

Finally, the model with the best validation loss is selected.

4.3 Model settings and variants

For our baseline model, we use Lm = Ls = 16384 input and
output samples, L = 12 layers, Fc = 24 extra filters per layer
and filter sizes fd = 15 and fu = 5.

(1)

To determine the impact of the model improvements

described in Section 3.2, we train a baseline model M1 as

described in Section 3.1 and models M2 to M5 which add the

difference output layer from Section 3.2.1 (M2), the input

context and resampling from Section 3.2.2 (M3), stereo

channels from Section 3.2.3 (M4), and learned upsampling

from Section 3.2.4 (M5), and also contain all features of the

respectively previous model. We apply the best model of the

above (M4) to multi-instrument separation (M6). Models with

input context (M3 to M6) have Lm = 147443 input and Ls =

16389 output samples.

For comparison with previous work, we also train the

spectrogram-based U-Net architecture [7] (U7) that achieved

state-of-the-art vocal separation performance, and a Wave-U-

Net comparison model (M7) under the same conditions, both

using the audio-based MSE loss and mono signals

downsampled to 8192 Hz. M7 is based on the best model M4,

but is set to Lm = 233459 and Ls = 102405 to have very similar

output size compared to U7 (Ls = 98650 samples), Fc = 34 to

bring our network to the same size as U7 (20M param.), and

the initial batch size is set to four due to the high amount of

memory needed per sample. To train U7, we backpropagate

the error through the inverse STFT operation that is used to

construct the source audio signal from the estimated

spectrogram magnitudes and the mixture phase. We also train

the same model with an L1 loss on the spectral magnitudes

(U7a), following [7]. Since the training procedure and loss are

exactly the same for networks U7 and M7, we can fairly

compare both architectures by ensuring that performance

differences do not arise simply because of the amount of

training data or the type of loss function used, and also

compare with a spectrogram- based loss (U7a). Despite our

effort to enable an overall model comparison, note that some

training settings such as learning rates used in [7] might differ

from ours (and are partly unknown) and could provide better

performance with U7 and U7a than shown here, even with the

same dataset.

5. RESULTS

5.1 Quantitative results

5.1.1 Evaluation metrics

The signal-to-distortion (SDR) metric is commonly used to
evaluate source separation performance [25]. An audio track
is usually partitioned into non-overlapping audio segments
multiple seconds in length, and segment-wise metrics are then
averaged over each audio track or the whole dataset to
evaluate model performance. Following the procedure used
for the SiSec separation campaign 2018 [17], these segments
are one second long.

5.1.2 Issues with current evaluation metrics

The SDR computation is problematic when the true source is
silent or near-silent. In case of silence, the SDR is undefined

(log(0)), which happens often for vocal tracks. Such segments
are excluded from the results, so performance on these
segments is ignored. For near-silent parts, the SDR is
typically very low when the separator output is quiet, but not
silent, although such an output is arguably not a

Figure 3. Violin plot of the segment-wise SDR values in the
MUSDB test set for model M5. Black points show medians, dark
blue lines the means.

grave error perceptually. These outliers are visualised using
model M5 in Figure 3. Since the mean over segments is
usually used to obtain overall performance measures, these
outliers greatly affect evaluation results.

Since the collection of segment-wise vocal SDR values

across the dataset is not normally distributed (compare Figure

3 for vocals), the mean and standard deviation are not

sufficient to adequately summarise it. As a workaround, we

take the median over segments, as it is robust against outliers

and intuitively describes the minimum performance that is

achieved 50% of the time. To describe the spread of the

distribution, we use the median absolute deviation (MAD) as a

rank-based equivalent to the standard deviation (SD). It is

defined as the median of the absolute deviations from the

overall median and is easily interpretable, since a value of x

means that 50% of values have an absolute difference from the

median that is lower than x.

We also note that increasing the duration of segments
beyond one second alleviates this issue by removing many,
but not all outliers. This is more memory-intensive and
presumably still punishes errors during silent sections most.

5.1.3 Model comparison

Table 2 shows the evaluation results for singing voice

separation. The low vocal SDR means and high medians for all

models again demonstrate the outlier problem discussed in

Section 5.1.2. The difference output layer does not noticeably

change performance, as model M2 appears to be only very

slightly better than model M1. Initial experiments without fine-

tuning showed a larger difference, which may indicate that a

finer adjustment of weights makes constrained outputs less

important, but they could still enable the usage of faster

learning rates. Introducing context noticeably improves

performance, as model M3 shows, likely due to better

predictions at output borders. The stereo modeling in model

M4 yields improvements especially for accompaniment, which

may be because its sounds are panned more to the left or right

channels than vocals. The learned upsampling (M5) slightly

improves the median, but slightly decreases the mean vocal

SDR. The small differences could be explained by the low

number of weights in learned upsampling layers, considering

that we also experimented with unconstrained convolutions,

which brought more improvements but also high-frequency

sound artifacts. We therefore consider M4 as our best model.

For multi-instrument separation, we achieve slightly lower but

moderate performance (M6), as shown in Table 3, in part due

to less training data.

Segment-wise SDR distribution

Vocals

Accompaniment

100 80 60 40 20 0 20 40

M1 M2 M3 M4 M5 M7 U7 U7a

Med. 3.90 3.92 3.96 4.46 4.58 3.49 2.76 2.74

Voc. MAD

Mean

3.04

-0.12

3.01

0.05

3.00

0.31

3.21

0.65

3.28

0.55

2.71

-0.23

2.46

-0.66

2.54

0.51

SD 14.00 13.63 13.25 13.67 13.84 13.00 12.38 10.82

Med. 7.45 7.46 7.53 10.69 10.66 7.12 6.76 6.68

Acc. MAD

Mean

2.08

7.62

2.10

7.68

2.11

7.66

3.15

11.85

3.10

11.74

2.04

7.15

2.00

6.90

2.04

6.85

SD 3.93 3.84 3.90 7.03 7.05 4.10 3.67 3.60

Table 2. Test set performance metrics (SDR statistics, in dB) for each
singing voice separation model. Best performances overall and
among comparison models are shown in bold.

Med.

Vocals
MAD Mean SD Med.

Other MAD
Mean SD

M6 3.0 2.76 -2.10 15.41 2.03 1.64 1.68 6.14

Med.
Bass MAD

Mean SD Med.
Drums MAD

Mean SD

M6 2.91 2.47 -0.30 13.50 4.15 1.99 2.88 7.68

Table 3. Test performance metrics (SDR statistics, in dB) for our
multi-instrument model

U7 performs worse than our comparison model M7,

suggesting that our network architecture compares favourably

to the state-of-the-art architecture since all else is kept

constant during the experiments. However, U7 stopped

improving on the training set unexpectedly early, perhaps

because it was not designed for minimising an audio-based

MSE loss or because of effects related to backpropagating

gradients through the inverse STFT. In contrast, U7a showed

expected training behaviour using the magnitude-based loss.

Our model also outperforms U7a, yielding considerably

higher mean and median SDR scores. The mean vocal SDR is

the only exception, arising since our model has more outlier

segments, but better output the majority of the time.

Models M4 and M6 were submitted as STL1 and STL2 to

the SiSec campaign [22]. For vocals, M4 performs better or as

well as almost all other systems. Although it is significantly

outperformed by submissions UHL3, TAK1-3 and TAU1, all

of these except TAK1 used an additional 800 songs for training

and thus have a large advantage. M4 also separates

accompaniment well, although slightly less so than the vocals.

We refer to [22] for more details.

5.2 Qualitative results and observations

As an example of problems occurring when not using a proper

temporal context, we generated a vocal source estimate for a

song with the baseline model M1, and visu- alised an excerpt

using a spectrogram in Figure 4. Since the model’s input and

output are of equal length and the total output is created by

concatenating predictions for non-overlapping consecutive

audio segments, inconsistencies emerge at the borders shown

in red: the loudness abruptly decreases at 1.2 seconds, and a

beginning vocal melisma is suddenly cut off at 2.8 seconds,

leaving only quiet noise, before the vocals reappear at 4.2

seconds. A vocal melisma with only the vowel “a” can sound

similar to a non-vocal instrument and presumably was

mistaken for one because no further temporal context was

available.

In conclusion, these models suffer not only from
inconsistencies at such segment borders, but are also less
capable of performing separation there whenever information
from a temporal context is required. Larger input and output
sizes alleviate the issue somewhat, but the problems at the

Figure 4. Power spectrogram (dB) of a vocal estimate excerpt
generated by a model without additional input context. Red markers
show boundaries between independent segment-wise predictions.

borders remain. Blending the predictions for overlapping
segments [4] is an ad-hoc solution, since the average of

multiple predicted audio signals might not be a realistic
prediction itself. For example, two sinusoids with equal
amplitude and frequency, but opposite phase would cancel
each other out. Blending should thus be avoided in favour of
our context-aware prediction framework.

6. DISCUSSION AND CONCLUSION

In this paper, we proposed the Wave-U-Net for end-to-end

audio source separation without any pre- or postprocessing,

and applied it to singing voice and multi-instrument

separation. A long temporal context is processed by repeated

downsampling and convolution of feature maps to combine

high- and low-level features at different time-scales. As

indicated by our experiments, it outperforms the state-of-the-

art spectrogram-based U-Net architecture [7] when trained

under comparable settings. Since our data is quite limited in

size however, it would be interesting to train our model on

datasets comparable in size to the one used in [7] to better

assess respective advantages and disadvantages.

We highlight the lack of a proper temporal input context in

recent separation and enhancement models, which can hurt

performance and create artifacts, and propose a simple change

to the padding of convolutions as a solution. Similarly,

artifacts resulting from upsampling by zero-padding as part of

strided transposed convolutions can be addressed with a linear

upsampling with a fixed or learned weight to avoid high-

frequency artifacts.

Finally, we identify a problem in current SDR-based

evaluation frameworks that produces outliers for quiet parts of
sources and propose additionally reporting rank-based metrics
as a simple workaround. However, the underlying problem of
perceptual evaluation of sound separation results using SDR
metrics still remains and should be tackled at its root in the
future.

For future work, we could investigate to which extent our

model performs a spectral analysis, and how to incorporate

computations similar to those in a multi-scale filterbank, or to

explicitly compute a decomposition of the input signal into a

hierarchical set of basis signals and weightings on which to

perform the separation, similar to the TasNet [12]. Furthermore,

better loss functions for raw audio prediction should be

investigated such as the ones provided by generative adversarial

networks [3,21], since the MSE might not reflect the perceived

loss of quality well.

f (
KH

z)

0

0

2

4

6

8

10

20

10

0

10

20

30

40

50

1 2 3
t (s)

4 5 6

7. REFERENCES

[1] Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior,
Koray Kavukcuoglu, et al. Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[2] Vincent Dumoulin and Francesco Visin. A guide to
convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285, 2016.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing
Systems, pages 2672–2680, 2014.

[4] Emad M Grais, Dominic Ward, and Mark D Plumbley.
Raw multi-channel audio source separation using
multiresolution convolutional auto-encoders. arXiv
preprint arXiv:1803.00702, 2018.

[5] D. Griffin and Jae Lim. Signal estimation from modified
short-time fourier transform. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 32(2):236–
243, 1984.

[6] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson,
and Paris Smaragdis. Singing-voice separation from
monaural recordings using deep recurrent neural
networks. In International Society for Music Information
Retrieval (ISMIR), pages 477–482, 2014.

[7] Andreas Jansson, Eric J. Humphrey, Nicola Montecchio,
Rachel Bittner, Aparna Kumar, and Tillman Weyde.
Singing voice separation with deep U-Net convolutional
networks. In Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), pages
323–332, 2017.

[8] Jonathan Le Roux, Nobutaka Ono, and Shigeki
Sagayama. Explicit consistency constraints for STFT
spectrograms and their application to phase
reconstruction. In SAPA@ INTERSPEECH, pages 23–
28, 2008.

[9] Antoine Liutkus, Derry Fitzgerald, and Zafar Rafii.
Scalable audio separation with light kernel additive
modelling. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 76–80. IEEE, 2015.

[10] Antoine Liutkus, Fabian-Robert St¨oter, Zafar Rafii,
Daichi Kitamura, Bertrand Rivet, Nobutaka Ito, Nobu-
taka Ono, and Julie Fontecave. The 2016 signal
separation evaluation campaign. In Proceedings of the
International Conference on Latent Variable Analysis
and Signal Separation (LVA/ICA), pages 323–332, 2017.

[11] Y. Luo, Z. Chen, J. R. Hershey, J. Le Roux, and N. Mes-
garani. Deep clustering and conventional networks for
music separation: Stronger together. In IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 61–65, 2017.

[12] Yi Luo and Nima Mesgarani. Tasnet: time-domain audio
separation network for real-time, single-channel speech
separation. CoRR, abs/1711.00541, 2017.

[13] Marius Miron, Jordi Janer Mestres, and Emilia G´omez
Guti´errez. Generating data to train convolutional neural
networks for classical music source separation. In
Proceedings of the 14th Sound and Music Computing
Conference. Aalto University, 2017.

[14] Aditya Arie Nugraha, Antoine Liutkus, and Emmanuel
Vincent. Multichannel audio source separation with
deep neural networks. PhD thesis, Inria, 2015.

[15] Augustus Odena, Vincent Dumoulin, and Chris Olah.
Deconvolution and checkerboard artifacts. Distill, 2016.

[16] Santiago Pascual, Antonio Bonafonte, and Joan Serra.
Segan: Speech enhancement generative adversarial
network. arXiv preprint arXiv:1703.09452, 2017.

[17] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stter,
Stylianos Ioannis Mimilakis, and Rachel Bittner. The
MUSDB18 corpus for music separation, 2017.

[18] Dario Rethage, Jordi Pons, and Xavier Serra. A wavenet for
speech denoising. CoRR, abs/1706.07162, 2017.

[19] O. Ronneberger, P. Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image
segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pages 234–241. Springer, 2015.

[20] Andrew JR Simpson, Gerard Roma, and Mark D Plumb-
ley. Deep karaoke: Extracting vocals from musical
mixtures using a convolutional deep neural network. In
International Conference on Latent Variable Analysis and
Signal Separation, pages 429–436. Springer, 2015.

[21] Daniel Stoller, Sebastian Ewert, and Simon Dixon.
Adversarial semi-supervised audio source separation
applied to singing voice extraction. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 2391–2395, Calgary,
Canada, 2018. IEEE.

[22] F.-R. St¨oter, A. Liutkus, and N. Ito. The 2018 Signal
Separation Evaluation Campaign. ArXiv e-prints, 2018.

[23] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N.
Takahashi, and Y. Mitsufuji. Improving music source
separation based on deep neural networks through data
augmentation and network blending. In 2017 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 261–265, March 2017.

[24] Shrikant Venkataramani and Paris Smaragdis. End-to-end
source separation with adaptive front-ends. CoRR,
abs/1705.02514, 2017.

[25] E. Vincent, R. Gribonval, and C. Fevotte. Performance
measurement in blind audio source separation. IEEE
Transactions on Audio, Speech, and Language
Processing, 14(4):1462–1469, 2006.

