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ABSTRACT 

Models for audio source separation usually operate on the 

magnitude spectrum, which ignores phase information and 

makes separation performance dependant on hyper-

parameters for the spectral front-end. Therefore, we 

investigate end-to-end source separation in the time-domain, 

which allows modelling phase information and avoids fixed 

spectral transformations. Due to high sampling rates for 

audio, employing a long temporal input context on the 

sample level is difficult, but required for high quality 

separation results because of long-range temporal 

correlations. In this context, we propose the Wave-U-Net, an 

adaptation of the U-Net to the one-dimensional time domain, 

which repeatedly resamples feature maps to compute and 

combine features at different time scales. We introduce 

further architectural improvements, including an output layer 

that enforces source additivity, an upsampling technique and 

a context-aware prediction framework to reduce output 

artifacts. Experiments for singing voice separation indicate 

that our architecture yields a performance comparable to a 

state-of-the-art spectrogram-based U-Net architecture, given 

the same data. Finally, we reveal a problem with outliers in 

the currently used SDR evaluation metrics and suggest 

reporting rank-based statistics to alleviate this problem. 

1. INTRODUCTION 

Current methods for audio source separation almost 

exclusively operate on spectrogram representations of the 

audio signals [6, 7], as they allow for direct access to 

components in time and frequency. In particular, after 

applying a short-time Fourier transform (STFT) to the input 

mixture signal, the complex-valued spectrogram is split into 

its magnitude and phase components. Then only the 

magnitudes are input to a parametric model, which returns 

estimated spectrogram magnitudes for the individual sound 

sources. To generate corresponding audio signals, these 

magnitudes are combined with the mixture phase and then 

converted with an inverse STFT to the time domain. 

Optionally, the phase can be recovered for each source 

individually using the Griffin-Lim algorithm [5]. 
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This approach has several limitations. Firstly, the STFT 

output depends on many parameters, such as the size and 

overlap of audio frames, which can affect the time and 

frequency resolution. Ideally, these parameters should be 

optimised in conjunction with the parameters of the separation 

model to maximise performance for a particular separation 

task. In practice, however, the transform parameters are fixed 

to specific values. Secondly, since the separation model does 

not estimate the source phase, it is often assumed to be equal 

to the mixture phase, which is incorrect for overlapping 

partials. Alternatively, the Griffin- Lim algorithm can be 

applied to find an approximation to a signal whose 

magnitudes are equal to the estimated ones, but this is slow 

and often no such signal exists [8]. Lastly, the mixture phase 

is ignored in the estimation of sources, which can potentially 

limit the performance. Thus, it would be desirable for the 

separation model to learn to estimate the source signals 

including their phase directly. 

As an approach to tackle the above problems, several audio 

processing models were recently proposed that operate directly 

on time-domain audio signals, including speech denoising as a 

task related to general audio source separation [1,16,18]. 

Inspired by these first results, we investigate in this paper the 

potential of fully end-to-end time-domain separation systems in 

the face of unresolved challenges. In particular, it is not clear if 

such a system will be able to deal effectively with the very 

long-range temporal dependencies present in audio due to its 

high sampling rate. Further, it is not obvious upfront whether 

the additional phase information will indeed be beneficial for 

the task, or whether the noisy phase might be detrimental for 

the learning dynamics in such a system. Overall, our 

contributions in this paper can be summarised as follows. 

• We propose the Wave-U-Net, a one-dimensional 
adaptation of the U-Net architecture [7, 19], which 
separates sources directly in the time domain and can 
take large temporal contexts into account. 

• We show a way to provide the model with additional 
input context to avoid artifacts at the boundaries of 
output windows, in contrast to previous work [7,16]. 

• We replace strided transposed convolution used in 
previous work [7, 16] for upsampling feature maps 
with linear interpolation followed by a normal 
convolution to avoid artifacts. 
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Figure 1. Our proposed Wave-U-Net with K sources and L layers. 
With our difference output layer, the K-th source prediction is the 
difference between the mixture and the sum of the other sources. 

• The Wave-U-Net achieves good multi-instrument and 
singing voice separation, the latter of which compares 
favourably to our re-implementation of the state-of-the-
art network architecture [7], which we train under 
comparable settings. 

• Since the Wave-U-Net can process multi-channel audio, 
we compare stereo with mono source separation 
performance 

• We highlight an issue with the commonly used Signal- to-
Distortion ratio evaluation metric, and propose a work-
around. 

It should be noted that we expect the current state of the art 
model as presented in [7] to yield higher separation quality 
than what we report here, as the training dataset used in [7] is 
well-designed, highly unbiased and considerably larger. 
However, we believe that our comparison with a re-
implementation trained under similar conditions might be 
indicative of relative performance improvements. 

2. RELATED WORK 

To alleviate the problem of fixed spectral representations 

widely used in previous work [6, 11, 13, 14, 20, 23], an 

adaptive front-end for spectrogram computation was 

developed [24] that is trained jointly with the separation 

network, which operates on the resulting magnitude 

spectrogram. Despite comparatively increased performance, 

the model does not exploit the mixture phase for better source 

magnitude predictions and also does not output the source 

phase, so the mixture phase has to be used for source signal 

reconstruction, both of which limit performance. 

To our knowledge, only the TasNet [12] and MRCAE [4] 
systems tackle the general problem of audio source separation 
in the time domain. The TasNet performs a decomposition of 
the signal into a set of basis signals and weights, 

 

and then creates a mask over the weights which are finally 
used to reconstruct the source signals. The model is shown to 
work for a speech separation task. However, the work makes 
conceptual trade-offs to allow for low-latency applications, 
while we focus on offline application, allowing us to exploit a 
large amount of contextual information. 

The multi-resolution convolutional auto-encoder (MR- 

CAE) [4] uses two layers of convolution and transposed 

convolution each. The authors argue the different 

convolutional filter sizes detect audio frequencies with 

different resolutions, but they work only on one time 

resolution (that of the input), since the network does not 

perform any resampling. Since input and output consist of 

only 1025 audio samples (equivalent to 23 ms), it can only 

exploit very little context information. Furthermore, at test 

time, output segments are overlapped using a regular spacing 

and then combined, which differs from how the network is 

trained. This mismatch and the small context could hurt 

performance and also explain why the provided sound 

examples exhibit many artifacts. 

For the purpose of speech enhancement and denoising, the 

SEGAN [16] was developed, employing a neural network 

with an encoder and decoder pathway that successively halves 

and doubles the resolution of feature maps in each layer, 

respectively, and features skip connections between encoder 

and decoder layers. While we use a similar architecture, we 

rectify the issue of aliasing artifacts in the generated output 

when using strided transposed convolutions as shown by [15]. 

Furthermore, the model cannot predict audio samples close to 

its border output well since it is given no additional input 

context, which is an issue we address using convolutions with 

proper padding. It is also not clear if the model’s performance 

can transfer to other and more challenging audio source 

separation tasks. 

The Wavenet [1] was adapted for speech denoising [18] to 

have a non-causal conditional input and a parallel output of 

samples for each prediction and is based on the repeated 

application of dilated convolutions with exponentially 

increasing dilation factors to factor in context information. 

While this architecture is very parameter-efficient, memory 

consumption is high since each feature map resulting from a 

dilated convolution still has the original audio’s sampling rate 

as resolution. 

In contrast, our approach calculates the longer-term 
dependencies based on feature maps with more features and 
increasingly lower resolution. This saves memory and en- 
ables a large number of high-level features, which arguably do 
not need sample-level resolution to be useful, such as 
instrument activity, or the position in the current measure. 

3. THE WAVE-U-NET MODEL 

Our   goal   is   to   separate   a   mixture   waveform M ∈ [−1, 
1]Lm× C into K source waveforms S1, . . . , SK with Sk ∈ [−1, 
1]L

s
× C for all k ∈ {1, . . . , K}, C as the number of audio 

channels and Lm and Ls as the respective numbers of audio 
samples. For model variants with extra input context, we have 
Lm > Ls and make predictions for the centre part of the input. 

Source 1 output Source K-1 output 

... 
Mixture audio 

1D Convolution, Size 1 
Crop and concat 

1D Convolution, Size 15 1D Convolution, Size 5 

Crop and concat 
Downsampling 

Downsampling block 1 
Upsampling 

Upsampling block 1 

Downsampling block 2 Upsampling block 2 
Crop and concat 

... ... 

Downsampling block L Upsampling block L 
Crop and concat 

1D Convolution, Size 15 



 
Block Operation Shape 

 
Input (16384, 1) 

DS, repeated for i 
= 1, . . . , L 

Conv1D(Fc · i, fd) 
Decimate (4, 288) 

 
Conv1D(Fc · (L + 1), fd) (4, 312) 

US, repeated for i 
= L, . . . , 1 

Upsample 
Concat(DS block i) 
Conv1D(Fc · i, fu) (16834, 24) 

 
Concat(Input) 
Conv1D(K, 1) 

(16834, 25) 
(16834, 2) 

Table 1. Block diagram of the base architecture. Shapes describe the 
final output after potential repeated application of blocks, for the 
example of model M1, and denote the number of time steps and 
feature channels, in that order. DS block i refers to the output before 
decimation. Note that the US blocks are applied in reverse order, from 
level L to 1. 

3.1 The base architecture 

A diagram of the Wave-U-Net architecture is shown in 

Figure 1. It computes an increasing number of higher-level 

features on coarser time scales using downsampling (DS) 

blocks. These features are combined with the earlier 

computed local, high-resolution features using upsampling 

(US) blocks, yielding multi-scale features which are used for 

making predictions. The network has L levels in total, with 

each successive level operating at half the time resolution as 

the previous one. For K sources to be estimated, the model 

returns predictions in the interval (−1, 1), one for each source 

audio sample. 

The detailed architecture is shown in Table 1. 

Conv1D(x,y) denotes a 1D convolution with x filters of size 

y. It includes zero-padding for the base architecture, and is 

followed by a LeakyReLU activation (except for the final 

one, which uses tanh). Decimate discards features for every 

other time step to halve the time resolution. Upsample 

performs upsampling in the time direction by a factor of two, 

for which we use linear interpolation (see Section 3.1.1 for 

details). Concat(x) concatenates the current, high-level 

features with more local features x. In extensions of the base 

architecture (see below), where Conv1D does not involve 

zero-padding, x is centre-cropped first so it has the same 

number of time steps as the current layer. 

3.1.1 Avoiding aliasing artifacts due to upsampling 

Many related approaches use transposed convolutions with 
strides to upsample feature maps [7,16]. This can introduce 
aliasing effects in the output, as shown for the case of image 
generation networks [15]. In initial tests, we also found 
artifacts when using such convolutions as upsampling blocks in 

our Wave-U-Net model in the form of high-frequency buzzing 
noise. 

Transposed convolutions with a filter size of k and a stride 

of x > 1 can be viewed as convolutions applied to feature 

maps padded with x−1 zeros between each original value [2]. 

We suspect that the interleaving with zeros without 

subsequent low-pass filtering introduces high-frequency 

patterns into the feature maps, shown symbolically in Figure 

2, which leads to high-frequency noise in the final out-put as 

well. Instead of transposed strided convolutions, we thus 

perform linear interpolation for upsampling, which ensures 

temporal continuity in the feature space, followed by a normal 

convolution. In initial tests, we did not observe 
 

 

 

Figure 2. a) Common model (e.g. [7]) with an even number of inputs 
(grey) which are zero-padded (black) before convolving, creating 
artifacts at the borders (dark colours). After decimation, a transposed 
convolution with stride 2 is shown here as upsampling by zero-
padding intermediate and border values followed by normal 
convolution, which likely creates high-frequency artifacts in the 
output. b) Our model with proper input context and linear 
interpolation for upsampling from Section 3.2.2 does not use zero-
padding. The number of features is kept uneven, so that upsampling 
does not require extrapolating values (red arrow). Although the 
output is smaller, artifacts are avoided. 

any high-frequency sound artifacts in the output with this 
technique and achieved very similar performance. 

3.2 Architectural improvements 

The previous Section described the baseline variant of the 
Wave-U-Net. In the following, we will describe a set of 
architectural improvements for the Wave-U-Net designed to 
increase model performance. 

3.2.1 Difference output layer 

Our baseline model outputs one source estimate for each of K 

sources by independently applying K convolutional filters 

followed by a tanh non-linearity to the last feature map. In the 

separation tasks we consider, the mixture signal is the sum of 

its source signal components: M ≈PKj=1 S j. Since our baseline 

model is not constrained in this fashion, it has to learn this rule 

approximately to avoid highly improbable outputs, which could 

slow down learning and reduce performance. Therefore, we use 

a difference output layer to constrain the outputs Sˆj , enforcing 

PKj=1 Sˆj = M: only K − 1 convolutional filters with a size of 1 

are applied to the last feature map of the network, followed by 

a tanh non-linearity, to estimate the first K − 1 source signals. 

The last source is then simply computed as SˆK = M − PK−1 

j=1Sˆj . 

This type of output was also used for speech denoising in 

[18] as part of an “energy-conserving” loss, and a similar idea 

can be found very commonly in spectrogram- based source 

separation in the form of masks that distribute the energy of 

the input mixture magnitudes to the output sources. We 

investigate the impact of introducing this layer and its 

additivity assumption, since it depends on the extent to which 

this additivity property is satisfied by the data. 

Convolution 

Decimation 

Upsampling 

Convolution 

? 

a) b) 



3.2.2 Prediction with proper input context and resampling 

In previous work [4,7,16], the input and the feature maps are 

padded with zeros before convolving, so that the resulting 

feature map does not change in its dimension, as shown in 

Figure 2a. This simplifies the network’s implementation, 

since the input and output dimensions are the same. Zero-

padding audio or spectrogram input this way effectively 

extends the input using silence at the beginning and end. 

However, taken from a random position in a full audio signal, 

the information at the boundary becomes artificial, i.e. the 

temporal context for this excerpt is given in the full audio 

signal but is ignored and assumed to be silent. Without 

proper context information, the network thus has difficulty 

predicting output values near the beginning and end of the 

sequence. As a result, simply concatenating the outputs as 

non-overlapping segments at test time to obtain the 

prediction for a full audio signal can create audible artifacts 

at the segment borders, as neighbouring outputs can be 

inconsistent when they are generated without correct context 

information. In Section 5.2, we investigate this behaviour in 

practice. 

As a solution, we employ convolutions without implicit 
padding and instead provide a mixture input larger than the 
size of the output prediction, so that the convolutions are 
computed on the correct audio context (see Figure 2b). Since 
this reduces the feature map sizes, we constrain the possible 

output sizes of the network so that feature maps are always 
large enough for the following convolution. 

Further, when resampling feature maps, feature dimensions 

are often exactly halved or doubled [7,16], as shown in Figure 

2a for transposed strided convolution. However, this 

necessarily involves extrapolating at least one value at a 

border, which can again introduce artifacts. Instead, we 

interpolate only between known neighbouring values and keep 

the very first and last entries, producing 2n − 1 entries from n 

or vice versa, as shown in Figure 2b. To recover the 

intermediate values after decimation, while keeping border 

values the same, we ensure that feature maps have odd 

dimensionality. 

3.2.3 Stereo channels 

To accommodate for multi-channel input with C channels, 

we simply change the input M from an Lm × 1 to an Lm × C 

matrix. Since the second dimension is treated as a feature 

channel, the first convolution of the network takes into 

account all input channels. For multi-channel output with C 

channels, we modify the output component to have K 

independent convolutional layers with filter size 1 and C 

filters each. With a difference output layer, we only use K − 
1 such convolutional layers. We use this simple approach 

with C = 2 to perform experiments with stereo recordings and 

investigate the degree of improvement in source separation 

metrics when using stereo instead of mono estimation. 

3.2.4 Learned upsampling for Wave-U-Net 

Linear interpolation for upsampling is simple, parameterless 
and encourages feature continuity. However, it may be 
restricting the network capacity too much. Perhaps, the 
feature spaces used in these feature maps are not structured 
 

so that a linear interpolation between two points in feature 

space is a useful point on its own, so that a learned 

upsampling could further enhance performance. To this end, 

we propose the learned upsampling layer. For a given F × n 

feature map with n time steps, we compute an interpolated 

feature ft+0.5 ∈ RF for pairs of neighbouring features ft, ft+1 ∈ 
RF using parameters w ∈ RF and the sigmoid function σ to 

constrain each wi ∈ w to the [0, 1] interval: 

 

This can be implemented as a 1D convolution across time 
with F filters of size two and no padding with a properly 
constrained matrix. The learned interpolation layer can be 
viewed as a generalisation of simple linear interpolation, 
since it allows convex combinations of features with weights 
other than 0.5. 

4. EXPERIMENTS 

We evaluate the performance of our models on two tasks: 
Singing voice separation and music separation with bass, 
drums, guitar, vocals and “other” instruments as categories, as 
defined by the SiSec separation campaign [10]. 

4.1 Datasets 

75 tracks from the training partition of the MUSDB [17] 
multi-track database are randomly assigned to our training 
set, and the remaining 25 tracks form the validation set, 
which is used for early stopping. Final performance is 
evaluated on the MUSDB test partition comprised of 50 
songs. For singing voice separation, we also add the whole 

CCMixter database [9] to the training set. 

As data augmentation for both tasks, we multiply source 
signals with a factor chosen uniformly from the interval [0.7, 
1.0] and set the input mixture as the sum of source signals. No 
further data preprocessing is performed, only a conversion to 
mono (except for stereo models) and down-sampling to 22050 
Hz. 

4.2 Training procedure 

During training, audio excerpts are sampled randomly and 

inputs padded accordingly for models with input context. As 

loss, we use the mean squared error (MSE) over all source 

output samples in a batch. We use the ADAM optimizer with 

learning rate 0.0001, decay rates β1 = 0.9 and β2 = 0.999 and 

a batch size of 16. We define 2000 iterations as one epoch, 

and perform early stopping after 20 epochs of no 

improvement on the validation set, measured by the MSE loss. 

Afterwards, the last model is fine-tuned further, with the batch 

size doubled and the learning rate lowered to 0.00001, again 

until 20 epochs without improvement in validation loss. 

Finally, the model with the best validation loss is selected. 

4.3 Model settings and variants 

For our baseline model, we use Lm = Ls = 16384 input and 
output samples, L = 12 layers, Fc = 24 extra filters per layer 
and filter sizes fd = 15 and fu = 5. 

(1) 



To determine the impact of the model improvements 

described in Section 3.2, we train a baseline model M1 as 

described in Section 3.1 and models M2 to M5 which add the 

difference output layer from Section 3.2.1 (M2), the input 

context and resampling from Section 3.2.2 (M3), stereo 

channels from Section 3.2.3 (M4), and learned upsampling 

from Section 3.2.4 (M5), and also contain all features of the 

respectively previous model. We apply the best model of the 

above (M4) to multi-instrument separation (M6). Models with 

input context (M3 to M6) have Lm = 147443 input and Ls = 

16389 output samples. 

For comparison with previous work, we also train the 

spectrogram-based U-Net architecture [7] (U7) that achieved 

state-of-the-art vocal separation performance, and a Wave-U-

Net comparison model (M7) under the same conditions, both 

using the audio-based MSE loss and mono signals 

downsampled to 8192 Hz. M7 is based on the best model M4, 

but is set to Lm = 233459 and Ls = 102405 to have very similar 

output size compared to U7 (Ls = 98650 samples), Fc = 34 to 

bring our network to the same size as U7 (20M param.), and 

the initial batch size is set to four due to the high amount of 

memory needed per sample. To train U7, we backpropagate 

the error through the inverse STFT operation that is used to 

construct the source audio signal from the estimated 

spectrogram magnitudes and the mixture phase. We also train 

the same model with an L1 loss on the spectral magnitudes 

(U7a), following [7]. Since the training procedure and loss are 

exactly the same for networks U7 and M7, we can fairly 

compare both architectures by ensuring that performance 

differences do not arise simply because of the amount of 

training data or the type of loss function used, and also 

compare with a spectrogram- based loss (U7a). Despite our 

effort to enable an overall model comparison, note that some 

training settings such as learning rates used in [7] might differ 

from ours (and are partly unknown) and could provide better 

performance with U7 and U7a than shown here, even with the 

same dataset. 

5. RESULTS 

5.1 Quantitative results 

5.1.1 Evaluation metrics 

The signal-to-distortion (SDR) metric is commonly used to 
evaluate source separation performance [25]. An audio track 
is usually partitioned into non-overlapping audio segments 
multiple seconds in length, and segment-wise metrics are then 
averaged over each audio track or the whole dataset to 
evaluate model performance. Following the procedure used 
for the SiSec separation campaign 2018 [17], these segments 
are one second long. 

5.1.2 Issues with current evaluation metrics 

The SDR computation is problematic when the true source is 
silent or near-silent. In case of silence, the SDR is undefined 

(log(0)), which happens often for vocal tracks. Such segments 
are excluded from the results, so performance on these 
segments is ignored. For near-silent parts, the SDR is 
typically very low when the separator output is quiet, but not 
silent, although such an output is arguably not a 
 

 

Figure 3. Violin plot of the segment-wise SDR values in the 
MUSDB test set for model M5. Black points show medians, dark 
blue lines the means. 

grave error perceptually. These outliers are visualised using 
model M5 in Figure 3. Since the mean over segments is 
usually used to obtain overall performance measures, these 
outliers greatly affect evaluation results. 

Since the collection of segment-wise vocal SDR values 

across the dataset is not normally distributed (compare Figure 

3 for vocals), the mean and standard deviation are not 

sufficient to adequately summarise it. As a workaround, we 

take the median over segments, as it is robust against outliers 

and intuitively describes the minimum performance that is 

achieved 50% of the time. To describe the spread of the 

distribution, we use the median absolute deviation (MAD) as a 

rank-based equivalent to the standard deviation (SD). It is 

defined as the median of the absolute deviations from the 

overall median and is easily interpretable, since a value of x 

means that 50% of values have an absolute difference from the 

median that is lower than x. 

We also note that increasing the duration of segments 
beyond one second alleviates this issue by removing many, 
but not all outliers. This is more memory-intensive and 
presumably still punishes errors during silent sections most. 

5.1.3 Model comparison 

Table 2 shows the evaluation results for singing voice 

separation. The low vocal SDR means and high medians for all 

models again demonstrate the outlier problem discussed in 

Section 5.1.2. The difference output layer does not noticeably 

change performance, as model M2 appears to be only very 

slightly better than model M1. Initial experiments without fine-

tuning showed a larger difference, which may indicate that a 

finer adjustment of weights makes constrained outputs less 

important, but they could still enable the usage of faster 

learning rates. Introducing context noticeably improves 

performance, as model M3 shows, likely due to better 

predictions at output borders. The stereo modeling in model 

M4 yields improvements especially for accompaniment, which 

may be because its sounds are panned more to the left or right 

channels than vocals. The learned upsampling (M5) slightly 

improves the median, but slightly decreases the mean vocal 

SDR. The small differences could be explained by the low 

number of weights in learned upsampling layers, considering 

that we also experimented with unconstrained convolutions, 

which brought more improvements but also high-frequency 

sound artifacts. We therefore consider M4 as our best model. 

For multi-instrument separation, we achieve slightly lower but 

moderate performance (M6), as shown in Table 3, in part due 

to less training data. 

Segment-wise SDR distribution 

Vocals 

Accompaniment 

100 80 60 40 20 0 20 40 



   
M1 M2 M3 M4 M5 M7 U7 U7a 

 
Med. 3.90 3.92 3.96 4.46 4.58 3.49 2.76 2.74 

Voc. MAD 

Mean 

3.04 

-0.12 

3.01 

0.05 

3.00 

0.31 

3.21 

0.65 

3.28 

0.55 

2.71 

-0.23 

2.46 

-0.66 

2.54 

0.51 
 

SD 14.00 13.63 13.25 13.67 13.84 13.00 12.38 10.82 
 

Med. 7.45 7.46 7.53 10.69 10.66 7.12 6.76 6.68 

Acc. MAD 

Mean 

2.08 

7.62 

2.10 

7.68 

2.11 

7.66 

3.15 

11.85 

3.10 

11.74 

2.04 

7.15 

2.00 

6.90 

2.04 

6.85 
 

SD 3.93 3.84 3.90 7.03 7.05 4.10 3.67 3.60 

Table 2. Test set performance metrics (SDR statistics, in dB) for each 
singing voice separation model. Best performances overall and 
among comparison models are shown in bold. 

  
Med. 

Vocals 
MAD Mean SD Med. 

Other MAD 
Mean SD 

M6 3.0 2.76 -2.10 15.41 2.03 1.64 1.68 6.14 
 

Med. 
Bass MAD 

Mean SD Med. 
Drums MAD 

Mean SD 

M6 2.91 2.47 -0.30 13.50 4.15 1.99 2.88 7.68 

Table 3. Test performance metrics (SDR statistics, in dB) for our 
multi-instrument model 

U7 performs worse than our comparison model M7, 

suggesting that our network architecture compares favourably 

to the state-of-the-art architecture since all else is kept 

constant during the experiments. However, U7 stopped 

improving on the training set unexpectedly early, perhaps 

because it was not designed for minimising an audio-based 

MSE loss or because of effects related to backpropagating 

gradients through the inverse STFT. In contrast, U7a showed 

expected training behaviour using the magnitude-based loss. 

Our model also outperforms U7a, yielding considerably 

higher mean and median SDR scores. The mean vocal SDR is 

the only exception, arising since our model has more outlier 

segments, but better output the majority of the time. 

Models M4 and M6 were submitted as STL1 and STL2 to 

the SiSec campaign [22]. For vocals, M4 performs better or as 

well as almost all other systems. Although it is significantly 

outperformed by submissions UHL3, TAK1-3 and TAU1, all 

of these except TAK1 used an additional 800 songs for training 

and thus have a large advantage. M4 also separates 

accompaniment well, although slightly less so than the vocals. 

We refer to [22] for more details. 

5.2 Qualitative results and observations 

As an example of problems occurring when not using a proper 

temporal context, we generated a vocal source estimate for a 

song with the baseline model M1, and visu- alised an excerpt 

using a spectrogram in Figure 4. Since the model’s input and 

output are of equal length and the total output is created by 

concatenating predictions for non-overlapping consecutive 

audio segments, inconsistencies emerge at the borders shown 

in red: the loudness abruptly decreases at 1.2 seconds, and a 

beginning vocal melisma is suddenly cut off at 2.8 seconds, 

leaving only quiet noise, before the vocals reappear at 4.2 

seconds. A vocal melisma with only the vowel “a” can sound 

similar to a non-vocal instrument and presumably was 

mistaken for one because no further temporal context was 

available. 

In conclusion, these models suffer not only from 
inconsistencies at such segment borders, but are also less 
capable of performing separation there whenever information 
from a temporal context is required. Larger input and output 
sizes alleviate the issue somewhat, but the problems at the 
 

 

Figure 4. Power spectrogram (dB) of a vocal estimate excerpt 
generated by a model without additional input context. Red markers 
show boundaries between independent segment-wise predictions. 

borders remain. Blending the predictions for overlapping 
segments [4] is an ad-hoc solution, since the average of 

multiple predicted audio signals might not be a realistic 
prediction itself. For example, two sinusoids with equal 
amplitude and frequency, but opposite phase would cancel 
each other out. Blending should thus be avoided in favour of 
our context-aware prediction framework. 

6. DISCUSSION AND CONCLUSION 

In this paper, we proposed the Wave-U-Net for end-to-end 

audio source separation without any pre- or postprocessing, 

and applied it to singing voice and multi-instrument 

separation. A long temporal context is processed by repeated 

downsampling and convolution of feature maps to combine 

high- and low-level features at different time-scales. As 

indicated by our experiments, it outperforms the state-of-the-

art spectrogram-based U-Net architecture [7] when trained 

under comparable settings. Since our data is quite limited in 

size however, it would be interesting to train our model on 

datasets comparable in size to the one used in [7] to better 

assess respective advantages and disadvantages. 

We highlight the lack of a proper temporal input context in 

recent separation and enhancement models, which can hurt 

performance and create artifacts, and propose a simple change 

to the padding of convolutions as a solution. Similarly, 

artifacts resulting from upsampling by zero-padding as part of 

strided transposed convolutions can be addressed with a linear 

upsampling with a fixed or learned weight to avoid high-

frequency artifacts. 

Finally, we identify a problem in current SDR-based 

evaluation frameworks that produces outliers for quiet parts of 
sources and propose additionally reporting rank-based metrics 
as a simple workaround. However, the underlying problem of 
perceptual evaluation of sound separation results using SDR 
metrics still remains and should be tackled at its root in the 
future. 

For future work, we could investigate to which extent our 

model performs a spectral analysis, and how to incorporate 

computations similar to those in a multi-scale filterbank, or to 

explicitly compute a decomposition of the input signal into a 

hierarchical set of basis signals and weightings on which to 

perform the separation, similar to the TasNet [12]. Furthermore, 

better loss functions for raw audio prediction should be 

investigated such as the ones provided by generative adversarial 

networks [3,21], since the MSE might not reflect the perceived 

loss of quality well. 
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