from builtins import range
|
|
import numpy as np
|
|
from random import shuffle
|
|
from past.builtins import xrange
|
|
|
|
def softmax_loss_naive(W, X, y, reg):
|
|
"""
|
|
Softmax loss function, naive implementation (with loops)
|
|
|
|
Inputs have dimension D, there are C classes, and we operate on minibatches
|
|
of N examples.
|
|
|
|
Inputs:
|
|
- W: A numpy array of shape (D, C) containing weights.
|
|
- X: A numpy array of shape (N, D) containing a minibatch of data.
|
|
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
|
|
that X[i] has label c, where 0 <= c < C.
|
|
- reg: (float) regularization strength
|
|
|
|
Returns a tuple of:
|
|
- loss as single float
|
|
- gradient with respect to weights W; an array of same shape as W
|
|
"""
|
|
# Initialize the loss and gradient to zero.
|
|
loss = 0.0
|
|
dW = np.zeros_like(W)
|
|
|
|
#############################################################################
|
|
# TODO: 使用显式循环计算softmax损失及其梯度。
|
|
# 将损失和梯度分别保存在loss和dW中。
|
|
# 如果你不小心,很容易遇到数值不稳定的情况。
|
|
# 不要忘了正则化!
|
|
#############################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
return loss, dW
|
|
|
|
|
|
def softmax_loss_vectorized(W, X, y, reg):
|
|
"""
|
|
Softmax loss function, vectorized version.
|
|
|
|
Inputs and outputs are the same as softmax_loss_naive.
|
|
"""
|
|
# Initialize the loss and gradient to zero.
|
|
loss = 0.0
|
|
dW = np.zeros_like(W)
|
|
|
|
#############################################################################
|
|
# TODO: 不使用显式循环计算softmax损失及其梯度。
|
|
# 将损失和梯度分别保存在loss和dW中。
|
|
# 如果你不小心,很容易遇到数值不稳定的情况。
|
|
# 不要忘了正则化!
|
|
#############################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
return loss, dW
|