from __future__ import print_function
|
|
|
|
from builtins import range
|
|
from builtins import object
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from past.builtins import xrange
|
|
|
|
class TwoLayerNet(object):
|
|
"""
|
|
A two-layer fully-connected neural network. The net has an input dimension of
|
|
N, a hidden layer dimension of H, and performs classification over C classes.
|
|
We train the network with a softmax loss function and L2 regularization on the
|
|
weight matrices. The network uses a ReLU nonlinearity after the first fully
|
|
connected layer.
|
|
|
|
In other words, the network has the following architecture:
|
|
|
|
input - fully connected layer - ReLU - fully connected layer - softmax
|
|
|
|
The outputs of the second fully-connected layer are the scores for each class.
|
|
"""
|
|
|
|
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
|
|
"""
|
|
Initialize the model. Weights are initialized to small random values and
|
|
biases are initialized to zero. Weights and biases are stored in the
|
|
variable self.params, which is a dictionary with the following keys:
|
|
|
|
W1: First layer weights; has shape (D, H)
|
|
b1: First layer biases; has shape (H,)
|
|
W2: Second layer weights; has shape (H, C)
|
|
b2: Second layer biases; has shape (C,)
|
|
|
|
Inputs:
|
|
- input_size: The dimension D of the input data.
|
|
- hidden_size: The number of neurons H in the hidden layer.
|
|
- output_size: The number of classes C.
|
|
"""
|
|
self.params = {}
|
|
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
|
|
self.params['b1'] = np.zeros(hidden_size)
|
|
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
|
|
self.params['b2'] = np.zeros(output_size)
|
|
|
|
def loss(self, X, y=None, reg=0.0):
|
|
"""
|
|
Compute the loss and gradients for a two layer fully connected neural
|
|
network.
|
|
|
|
Inputs:
|
|
- X: Input data of shape (N, D). Each X[i] is a training sample.
|
|
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
|
|
an integer in the range 0 <= y[i] < C. This parameter is optional; if it
|
|
is not passed then we only return scores, and if it is passed then we
|
|
instead return the loss and gradients.
|
|
- reg: Regularization strength.
|
|
|
|
Returns:
|
|
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
|
|
the score for class c on input X[i].
|
|
|
|
If y is not None, instead return a tuple of:
|
|
- loss: Loss (data loss and regularization loss) for this batch of training
|
|
samples.
|
|
- grads: Dictionary mapping parameter names to gradients of those parameters
|
|
with respect to the loss function; has the same keys as self.params.
|
|
"""
|
|
# Unpack variables from the params dictionary
|
|
W1, b1 = self.params['W1'], self.params['b1']
|
|
W2, b2 = self.params['W2'], self.params['b2']
|
|
N, D = X.shape
|
|
|
|
# Compute the forward pass
|
|
scores = None
|
|
#############################################################################
|
|
# TODO: 执行向前传播,计算输入数据的每个类的score。
|
|
# 将结果存储在scores变量中,该变量应该是一个(N, C)维的数组。
|
|
#############################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
# If the targets are not given then jump out, we're done
|
|
if y is None:
|
|
return scores
|
|
|
|
# Compute the loss
|
|
loss = None
|
|
#############################################################################
|
|
# TODO: 完成向前传播,计算损失。
|
|
# 这应该包括数据损失和W1和W2的L2正则化项。
|
|
# 将结果存储在变量loss中,它应该是一个标量。
|
|
# 使用Softmax损失函数。
|
|
#############################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
# Backward pass: compute gradients
|
|
grads = {}
|
|
#############################################################################
|
|
# TODO: 计算反向传播,计算权重和偏置值的梯度, 将结果存储在grads字典中。
|
|
# 例如,grads['W1']存储W1的梯度,并且和W1是相同大小的矩阵。
|
|
#############################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
return loss, grads
|
|
|
|
def train(self, X, y, X_val, y_val,
|
|
learning_rate=1e-3, learning_rate_decay=0.95,
|
|
reg=5e-6, num_iters=100,
|
|
batch_size=200, verbose=False):
|
|
"""
|
|
Train this neural network using stochastic gradient descent.
|
|
|
|
Inputs:
|
|
- X: A numpy array of shape (N, D) giving training data.
|
|
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that
|
|
X[i] has label c, where 0 <= c < C.
|
|
- X_val: A numpy array of shape (N_val, D) giving validation data.
|
|
- y_val: A numpy array of shape (N_val,) giving validation labels.
|
|
- learning_rate: Scalar giving learning rate for optimization.
|
|
- learning_rate_decay: Scalar giving factor used to decay the learning rate
|
|
after each epoch.
|
|
- reg: Scalar giving regularization strength.
|
|
- num_iters: Number of steps to take when optimizing.
|
|
- batch_size: Number of training examples to use per step.
|
|
- verbose: boolean; if true print progress during optimization.
|
|
"""
|
|
num_train = X.shape[0]
|
|
iterations_per_epoch = max(num_train / batch_size, 1)
|
|
|
|
# Use SGD to optimize the parameters in self.model
|
|
loss_history = []
|
|
train_acc_history = []
|
|
val_acc_history = []
|
|
|
|
for it in range(num_iters):
|
|
X_batch = None
|
|
y_batch = None
|
|
|
|
#########################################################################
|
|
# TODO: 创建一个随机的数据和标签的mini-batch,存储在X_batch和y_batch中。
|
|
#########################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
# Compute loss and gradients using the current minibatch
|
|
loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
|
|
loss_history.append(loss)
|
|
|
|
#########################################################################
|
|
# TODO: 使用grads字典中的梯度来更新网络参数(参数存储在字典self.params中)
|
|
# 使用随机梯度下降法。
|
|
#########################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
if verbose and it % 100 == 0:
|
|
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
|
|
|
|
# Every epoch, check train and val accuracy and decay learning rate.
|
|
if it % iterations_per_epoch == 0:
|
|
# Check accuracy
|
|
train_acc = (self.predict(X_batch) == y_batch).mean()
|
|
val_acc = (self.predict(X_val) == y_val).mean()
|
|
train_acc_history.append(train_acc)
|
|
val_acc_history.append(val_acc)
|
|
|
|
# Decay learning rate
|
|
learning_rate *= learning_rate_decay
|
|
|
|
return {
|
|
'loss_history': loss_history,
|
|
'train_acc_history': train_acc_history,
|
|
'val_acc_history': val_acc_history,
|
|
}
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Use the trained weights of this two-layer network to predict labels for
|
|
data points. For each data point we predict scores for each of the C
|
|
classes, and assign each data point to the class with the highest score.
|
|
|
|
Inputs:
|
|
- X: A numpy array of shape (N, D) giving N D-dimensional data points to
|
|
classify.
|
|
|
|
Returns:
|
|
- y_pred: A numpy array of shape (N,) giving predicted labels for each of
|
|
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
|
|
to have class c, where 0 <= c < C.
|
|
"""
|
|
y_pred = None
|
|
|
|
###########################################################################
|
|
# TODO: Implement this function; it should be VERY simple! #
|
|
###########################################################################
|
|
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
pass
|
|
|
|
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
|
|
|
|
return y_pred
|