from builtins import object import numpy as np from daseCV.layers import * from daseCV.fast_layers import * from daseCV.layer_utils import * class ThreeLayerConvNet(object): """ A three-layer convolutional network with the following architecture: conv - relu - 2x2 max pool - affine - relu - affine - softmax The network operates on minibatches of data that have shape (N, C, H, W) consisting of N images, each with height H and width W and with C input channels. """ def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0, dtype=np.float32): """ Initialize a new network. Inputs: - input_dim: Tuple (C, H, W) giving size of input data - num_filters: Number of filters to use in the convolutional layer - filter_size: Width/height of filters to use in the convolutional layer - hidden_dim: Number of units to use in the fully-connected hidden layer - num_classes: Number of scores to produce from the final affine layer. - weight_scale: Scalar giving standard deviation for random initialization of weights. - reg: Scalar giving L2 regularization strength - dtype: numpy datatype to use for computation. """ self.params = {} self.reg = reg self.dtype = dtype ############################################################################ # TODO: 初始化三层卷积网络的权重和偏差。 # 权重应用以0.0为中心的高斯初始化,标准差等于weight_scale; # 偏差应初始化为零。所有权重和偏差应存储在字典self.params中。 # 使用键“ W1”和“ b1”存储卷积层的权重和偏差;使用键“ W2”和“ b2” # 表示隐藏仿射层的权重和偏差,并使用键“ W3”和“ b3”表示输出仿射层的 # 权重和偏差。重要说明:对于本次作业,您可以假设第一个卷积层的padding和 # stride以及设置了,这样**输入的width和height就保留了**。看一下loss() # 函数的前部分它是如何做的。 ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ for k, v in self.params.items(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Evaluate loss and gradient for the three-layer convolutional network. Input / output: Same API as TwoLayerNet in fc_net.py. """ W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] W3, b3 = self.params['W3'], self.params['b3'] # pass conv_param to the forward pass for the convolutional layer # Padding and stride chosen to preserve the input spatial size filter_size = W1.shape[2] conv_param = {'stride': 1, 'pad': (filter_size - 1) // 2} # pass pool_param to the forward pass for the max-pooling layer pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2} scores = None ############################################################################ # TODO: 实现三层卷积网络的正向传播,计算X的每类的分数并将其存储在scores变量中。 #请注意,您可以在实现中使用daseCV/fast_layers.py和daseCV/layer_utils.py中定义的功能(已导入)。 ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ if y is None: return scores loss, grads = 0, {} ############################################################################ # TODO: 完成三层卷积网络的反向传播,将损失和梯度存储在变量loss和grads中。 # 使用softmax计算损失,并使用grads[k]保存self.params[k]的梯度。不要忘记增加L2正则化! # # NOTE: 为确保您的实现与我们的实现相同并通过自动化测试,请确保您的L2正则化系数为0.5, # 以简化梯度的表达式。 ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads