from __future__ import print_function from builtins import range from builtins import object import numpy as np import matplotlib.pyplot as plt from past.builtins import xrange class TwoLayerNet(object): """ A two-layer fully-connected neural network. The net has an input dimension of N, a hidden layer dimension of H, and performs classification over C classes. We train the network with a softmax loss function and L2 regularization on the weight matrices. The network uses a ReLU nonlinearity after the first fully connected layer. In other words, the network has the following architecture: input - fully connected layer - ReLU - fully connected layer - softmax The outputs of the second fully-connected layer are the scores for each class. """ def __init__(self, input_size, hidden_size, output_size, std=1e-4): """ Initialize the model. Weights are initialized to small random values and biases are initialized to zero. Weights and biases are stored in the variable self.params, which is a dictionary with the following keys: W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) Inputs: - input_size: The dimension D of the input data. - hidden_size: The number of neurons H in the hidden layer. - output_size: The number of classes C. """ self.params = {} self.params['W1'] = std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def loss(self, X, y=None, reg=0.0): """ Compute the loss and gradients for a two layer fully connected neural network. Inputs: - X: Input data of shape (N, D). Each X[i] is a training sample. - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is an integer in the range 0 <= y[i] < C. This parameter is optional; if it is not passed then we only return scores, and if it is passed then we instead return the loss and gradients. - reg: Regularization strength. Returns: If y is None, return a matrix scores of shape (N, C) where scores[i, c] is the score for class c on input X[i]. If y is not None, instead return a tuple of: - loss: Loss (data loss and regularization loss) for this batch of training samples. - grads: Dictionary mapping parameter names to gradients of those parameters with respect to the loss function; has the same keys as self.params. """ # Unpack variables from the params dictionary W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] N, D = X.shape # Compute the forward pass scores = None ############################################################################# # TODO: 执行向前传播,计算输入数据的每个类的score。 # 将结果存储在scores变量中,该变量应该是一个(N, C)维的数组。 ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # If the targets are not given then jump out, we're done if y is None: return scores # Compute the loss loss = None ############################################################################# # TODO: 完成向前传播,计算损失。 # 这应该包括数据损失和W1和W2的L2正则化项。 # 将结果存储在变量loss中,它应该是一个标量。 # 使用Softmax损失函数。 ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Backward pass: compute gradients grads = {} ############################################################################# # TODO: 计算反向传播,计算权重和偏置值的梯度, 将结果存储在grads字典中。 # 例如,grads['W1']存储W1的梯度,并且和W1是相同大小的矩阵。 ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, grads def train(self, X, y, X_val, y_val, learning_rate=1e-3, learning_rate_decay=0.95, reg=5e-6, num_iters=100, batch_size=200, verbose=False): """ Train this neural network using stochastic gradient descent. Inputs: - X: A numpy array of shape (N, D) giving training data. - y: A numpy array f shape (N,) giving training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - X_val: A numpy array of shape (N_val, D) giving validation data. - y_val: A numpy array of shape (N_val,) giving validation labels. - learning_rate: Scalar giving learning rate for optimization. - learning_rate_decay: Scalar giving factor used to decay the learning rate after each epoch. - reg: Scalar giving regularization strength. - num_iters: Number of steps to take when optimizing. - batch_size: Number of training examples to use per step. - verbose: boolean; if true print progress during optimization. """ num_train = X.shape[0] iterations_per_epoch = max(num_train / batch_size, 1) # Use SGD to optimize the parameters in self.model loss_history = [] train_acc_history = [] val_acc_history = [] for it in range(num_iters): X_batch = None y_batch = None ######################################################################### # TODO: 创建一个随机的数据和标签的mini-batch,存储在X_batch和y_batch中。 ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Compute loss and gradients using the current minibatch loss, grads = self.loss(X_batch, y=y_batch, reg=reg) loss_history.append(loss) ######################################################################### # TODO: 使用grads字典中的梯度来更新网络参数(参数存储在字典self.params中) # 使用随机梯度下降法。 ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** if verbose and it % 100 == 0: print('iteration %d / %d: loss %f' % (it, num_iters, loss)) # Every epoch, check train and val accuracy and decay learning rate. if it % iterations_per_epoch == 0: # Check accuracy train_acc = (self.predict(X_batch) == y_batch).mean() val_acc = (self.predict(X_val) == y_val).mean() train_acc_history.append(train_acc) val_acc_history.append(val_acc) # Decay learning rate learning_rate *= learning_rate_decay return { 'loss_history': loss_history, 'train_acc_history': train_acc_history, 'val_acc_history': val_acc_history, } def predict(self, X): """ Use the trained weights of this two-layer network to predict labels for data points. For each data point we predict scores for each of the C classes, and assign each data point to the class with the highest score. Inputs: - X: A numpy array of shape (N, D) giving N D-dimensional data points to classify. Returns: - y_pred: A numpy array of shape (N,) giving predicted labels for each of the elements of X. For all i, y_pred[i] = c means that X[i] is predicted to have class c, where 0 <= c < C. """ y_pred = None ########################################################################### # TODO: Implement this function; it should be VERY simple! # ########################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return y_pred