DaSE-Computer-Vision-2021
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

73 lines
2.1 KiB

преди 3 години
  1. from builtins import range
  2. from past.builtins import xrange
  3. from math import sqrt, ceil
  4. import numpy as np
  5. def visualize_grid(Xs, ubound=255.0, padding=1):
  6. """
  7. Reshape a 4D tensor of image data to a grid for easy visualization.
  8. Inputs:
  9. - Xs: Data of shape (N, H, W, C)
  10. - ubound: Output grid will have values scaled to the range [0, ubound]
  11. - padding: The number of blank pixels between elements of the grid
  12. """
  13. (N, H, W, C) = Xs.shape
  14. grid_size = int(ceil(sqrt(N)))
  15. grid_height = H * grid_size + padding * (grid_size - 1)
  16. grid_width = W * grid_size + padding * (grid_size - 1)
  17. grid = np.zeros((grid_height, grid_width, C))
  18. next_idx = 0
  19. y0, y1 = 0, H
  20. for y in range(grid_size):
  21. x0, x1 = 0, W
  22. for x in range(grid_size):
  23. if next_idx < N:
  24. img = Xs[next_idx]
  25. low, high = np.min(img), np.max(img)
  26. grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low)
  27. # grid[y0:y1, x0:x1] = Xs[next_idx]
  28. next_idx += 1
  29. x0 += W + padding
  30. x1 += W + padding
  31. y0 += H + padding
  32. y1 += H + padding
  33. # grid_max = np.max(grid)
  34. # grid_min = np.min(grid)
  35. # grid = ubound * (grid - grid_min) / (grid_max - grid_min)
  36. return grid
  37. def vis_grid(Xs):
  38. """ visualize a grid of images """
  39. (N, H, W, C) = Xs.shape
  40. A = int(ceil(sqrt(N)))
  41. G = np.ones((A*H+A, A*W+A, C), Xs.dtype)
  42. G *= np.min(Xs)
  43. n = 0
  44. for y in range(A):
  45. for x in range(A):
  46. if n < N:
  47. G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = Xs[n,:,:,:]
  48. n += 1
  49. # normalize to [0,1]
  50. maxg = G.max()
  51. ming = G.min()
  52. G = (G - ming)/(maxg-ming)
  53. return G
  54. def vis_nn(rows):
  55. """ visualize array of arrays of images """
  56. N = len(rows)
  57. D = len(rows[0])
  58. H,W,C = rows[0][0].shape
  59. Xs = rows[0][0]
  60. G = np.ones((N*H+N, D*W+D, C), Xs.dtype)
  61. for y in range(N):
  62. for x in range(D):
  63. G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = rows[y][x]
  64. # normalize to [0,1]
  65. maxg = G.max()
  66. ming = G.min()
  67. G = (G - ming)/(maxg-ming)
  68. return G