DaSE-Computer-Vision-2021
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

97 行
3.5 KiB

  1. from builtins import range
  2. import numpy as np
  3. from random import shuffle
  4. from past.builtins import xrange
  5. def svm_loss_naive(W, X, y, reg):
  6. """
  7. Structured SVM loss function, naive implementation (with loops).
  8. Inputs have dimension D, there are C classes, and we operate on minibatches
  9. of N examples.
  10. Inputs:
  11. - W: A numpy array of shape (D, C) containing weights.
  12. - X: A numpy array of shape (N, D) containing a minibatch of data.
  13. - y: A numpy array of shape (N,) containing training labels; y[i] = c means
  14. that X[i] has label c, where 0 <= c < C.
  15. - reg: (float) regularization strength
  16. Returns a tuple of:
  17. - loss as single float
  18. - gradient with respect to weights W; an array of same shape as W
  19. """
  20. dW = np.zeros(W.shape) # initialize the gradient as zero
  21. # compute the loss and the gradient
  22. num_classes = W.shape[1]
  23. num_train = X.shape[0]
  24. loss = 0.0
  25. for i in range(num_train):
  26. scores = X[i].dot(W)
  27. correct_class_score = scores[y[i]]
  28. for j in range(num_classes):
  29. if j == y[i]:
  30. continue
  31. margin = scores[j] - correct_class_score + 1 # note delta = 1
  32. if margin > 0:
  33. loss += margin
  34. dW[:,j] += X[i] # dW计算
  35. dW[:,y[i]] += -X[i] # dW计算
  36. # Right now the loss is a sum over all training examples, but we want it
  37. # to be an average instead so we divide by num_train.
  38. loss /= num_train
  39. # Add regularization to the loss.
  40. loss += reg * np.sum(W * W)
  41. #############################################################################
  42. # TODO:
  43. # 计算损失函数的梯度并将其存储为dW。
  44. # 与其先计算损失再计算梯度,还不如在计算损失的同时计算梯度更简单。
  45. # 因此,您可能需要修改上面的一些代码来计算梯度。
  46. #############################################################################
  47. # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  48. pass
  49. # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  50. return loss, dW
  51. def svm_loss_vectorized(W, X, y, reg):
  52. """
  53. Structured SVM loss function, vectorized implementation.
  54. Inputs and outputs are the same as svm_loss_naive.
  55. """
  56. loss = 0.0
  57. dW = np.zeros(W.shape) # initialize the gradient as zero
  58. #############################################################################
  59. # TODO:
  60. # 实现一个向量化SVM损失计算方法,并将结果存储到loss中
  61. #############################################################################
  62. # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  63. pass
  64. # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  65. #############################################################################
  66. # TODO:
  67. # 实现一个向量化的梯度计算方法,并将结果存储到dW中
  68. #
  69. # 提示:与其从头计算梯度,不如利用一些计算loss时的中间变量
  70. #############################################################################
  71. # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  72. pass
  73. # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
  74. return loss, dW