|
|
- from __future__ import print_function
-
- from builtins import range
- from builtins import object
- import numpy as np
- import matplotlib.pyplot as plt
- from past.builtins import xrange
-
- class TwoLayerNet(object):
- """
- A two-layer fully-connected neural network. The net has an input dimension of
- N, a hidden layer dimension of H, and performs classification over C classes.
- We train the network with a softmax loss function and L2 regularization on the
- weight matrices. The network uses a ReLU nonlinearity after the first fully
- connected layer.
-
- In other words, the network has the following architecture:
-
- input - fully connected layer - ReLU - fully connected layer - softmax
-
- The outputs of the second fully-connected layer are the scores for each class.
- """
-
- def __init__(self, input_size, hidden_size, output_size, std=1e-4):
- """
- Initialize the model. Weights are initialized to small random values and
- biases are initialized to zero. Weights and biases are stored in the
- variable self.params, which is a dictionary with the following keys:
-
- W1: First layer weights; has shape (D, H)
- b1: First layer biases; has shape (H,)
- W2: Second layer weights; has shape (H, C)
- b2: Second layer biases; has shape (C,)
-
- Inputs:
- - input_size: The dimension D of the input data.
- - hidden_size: The number of neurons H in the hidden layer.
- - output_size: The number of classes C.
- """
- self.params = {}
- self.params['W1'] = std * np.random.randn(input_size, hidden_size)
- self.params['b1'] = np.zeros(hidden_size)
- self.params['W2'] = std * np.random.randn(hidden_size, output_size)
- self.params['b2'] = np.zeros(output_size)
-
- def loss(self, X, y=None, reg=0.0):
- """
- Compute the loss and gradients for a two layer fully connected neural
- network.
-
- Inputs:
- - X: Input data of shape (N, D). Each X[i] is a training sample.
- - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
- an integer in the range 0 <= y[i] < C. This parameter is optional; if it
- is not passed then we only return scores, and if it is passed then we
- instead return the loss and gradients.
- - reg: Regularization strength.
-
- Returns:
- If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
- the score for class c on input X[i].
-
- If y is not None, instead return a tuple of:
- - loss: Loss (data loss and regularization loss) for this batch of training
- samples.
- - grads: Dictionary mapping parameter names to gradients of those parameters
- with respect to the loss function; has the same keys as self.params.
- """
- # Unpack variables from the params dictionary
- W1, b1 = self.params['W1'], self.params['b1']
- W2, b2 = self.params['W2'], self.params['b2']
- N, D = X.shape
-
- # Compute the forward pass
- scores = None
- #############################################################################
- # TODO: 执行向前传播,计算输入数据的每个类的score。
- # 将结果存储在scores变量中,该变量应该是一个(N, C)维的数组。
- #############################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- # If the targets are not given then jump out, we're done
- if y is None:
- return scores
-
- # Compute the loss
- loss = None
- #############################################################################
- # TODO: 完成向前传播,计算损失。
- # 这应该包括数据损失和W1和W2的L2正则化项。
- # 将结果存储在变量loss中,它应该是一个标量。
- # 使用Softmax损失函数。
- #############################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- # Backward pass: compute gradients
- grads = {}
- #############################################################################
- # TODO: 计算反向传播,计算权重和偏置值的梯度, 将结果存储在grads字典中。
- # 例如,grads['W1']存储W1的梯度,并且和W1是相同大小的矩阵。
- #############################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- return loss, grads
-
- def train(self, X, y, X_val, y_val,
- learning_rate=1e-3, learning_rate_decay=0.95,
- reg=5e-6, num_iters=100,
- batch_size=200, verbose=False):
- """
- Train this neural network using stochastic gradient descent.
-
- Inputs:
- - X: A numpy array of shape (N, D) giving training data.
- - y: A numpy array f shape (N,) giving training labels; y[i] = c means that
- X[i] has label c, where 0 <= c < C.
- - X_val: A numpy array of shape (N_val, D) giving validation data.
- - y_val: A numpy array of shape (N_val,) giving validation labels.
- - learning_rate: Scalar giving learning rate for optimization.
- - learning_rate_decay: Scalar giving factor used to decay the learning rate
- after each epoch.
- - reg: Scalar giving regularization strength.
- - num_iters: Number of steps to take when optimizing.
- - batch_size: Number of training examples to use per step.
- - verbose: boolean; if true print progress during optimization.
- """
- num_train = X.shape[0]
- iterations_per_epoch = max(num_train / batch_size, 1)
-
- # Use SGD to optimize the parameters in self.model
- loss_history = []
- train_acc_history = []
- val_acc_history = []
-
- for it in range(num_iters):
- X_batch = None
- y_batch = None
-
- #########################################################################
- # TODO: 创建一个随机的数据和标签的mini-batch,存储在X_batch和y_batch中。
- #########################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- # Compute loss and gradients using the current minibatch
- loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
- loss_history.append(loss)
-
- #########################################################################
- # TODO: 使用grads字典中的梯度来更新网络参数(参数存储在字典self.params中)
- # 使用随机梯度下降法。
- #########################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- if verbose and it % 100 == 0:
- print('iteration %d / %d: loss %f' % (it, num_iters, loss))
-
- # Every epoch, check train and val accuracy and decay learning rate.
- if it % iterations_per_epoch == 0:
- # Check accuracy
- train_acc = (self.predict(X_batch) == y_batch).mean()
- val_acc = (self.predict(X_val) == y_val).mean()
- train_acc_history.append(train_acc)
- val_acc_history.append(val_acc)
-
- # Decay learning rate
- learning_rate *= learning_rate_decay
-
- return {
- 'loss_history': loss_history,
- 'train_acc_history': train_acc_history,
- 'val_acc_history': val_acc_history,
- }
-
- def predict(self, X):
- """
- Use the trained weights of this two-layer network to predict labels for
- data points. For each data point we predict scores for each of the C
- classes, and assign each data point to the class with the highest score.
-
- Inputs:
- - X: A numpy array of shape (N, D) giving N D-dimensional data points to
- classify.
-
- Returns:
- - y_pred: A numpy array of shape (N,) giving predicted labels for each of
- the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
- to have class c, where 0 <= c < C.
- """
- y_pred = None
-
- ###########################################################################
- # TODO: Implement this function; it should be VERY simple! #
- ###########################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- return y_pred
|