|
|
- from builtins import range
- import numpy as np
- from random import shuffle
- from past.builtins import xrange
-
- def svm_loss_naive(W, X, y, reg):
- """
- Structured SVM loss function, naive implementation (with loops).
-
- Inputs have dimension D, there are C classes, and we operate on minibatches
- of N examples.
-
- Inputs:
- - W: A numpy array of shape (D, C) containing weights.
- - X: A numpy array of shape (N, D) containing a minibatch of data.
- - y: A numpy array of shape (N,) containing training labels; y[i] = c means
- that X[i] has label c, where 0 <= c < C.
- - reg: (float) regularization strength
-
- Returns a tuple of:
- - loss as single float
- - gradient with respect to weights W; an array of same shape as W
- """
- dW = np.zeros(W.shape) # initialize the gradient as zero
-
- # compute the loss and the gradient
- num_classes = W.shape[1]
- num_train = X.shape[0]
- loss = 0.0
- for i in range(num_train):
- scores = X[i].dot(W)
- correct_class_score = scores[y[i]]
- for j in range(num_classes):
- if j == y[i]:
- continue
- margin = scores[j] - correct_class_score + 1 # note delta = 1
- if margin > 0:
- loss += margin
- dW[:,j] += X[i] # dW计算
- dW[:,y[i]] += -X[i] # dW计算
-
- # Right now the loss is a sum over all training examples, but we want it
- # to be an average instead so we divide by num_train.
- loss /= num_train
-
- # Add regularization to the loss.
- loss += reg * np.sum(W * W)
-
- #############################################################################
- # TODO:
- # 计算损失函数的梯度并将其存储为dW。
- # 与其先计算损失再计算梯度,还不如在计算损失的同时计算梯度更简单。
- # 因此,您可能需要修改上面的一些代码来计算梯度。
- #############################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- return loss, dW
-
-
-
- def svm_loss_vectorized(W, X, y, reg):
- """
- Structured SVM loss function, vectorized implementation.
-
- Inputs and outputs are the same as svm_loss_naive.
- """
- loss = 0.0
- dW = np.zeros(W.shape) # initialize the gradient as zero
-
- #############################################################################
- # TODO:
- # 实现一个向量化SVM损失计算方法,并将结果存储到loss中
- #############################################################################
-
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- #############################################################################
- # TODO:
- # 实现一个向量化的梯度计算方法,并将结果存储到dW中
- #
- # 提示:与其从头计算梯度,不如利用一些计算loss时的中间变量
- #############################################################################
- # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- pass
-
- # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
-
- return loss, dW
|