您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 

60 行
1.8 KiB

#import warnings
#warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
#获取数据
ratings_df = pd.read_csv('real_ratings.csv')
movies_df = pd.read_csv('movies.csv')
userNo = max(ratings_df['userId'])+1
movieNo = max(ratings_df['movieRow'])+1
print(userNo,movieNo)
#创建电影评分表
rating = np.zeros((userNo,movieNo))
for index,row in ratings_df.iterrows():
rating[int(row['userId']),int(row['movieRow'])]=row['rating']
def recommend(userID,lr,alpha,d,n_iter,data):
'''
userID(int):推荐用户ID
lr(float):学习率
alpha(float):权重衰减系数
d(int):矩阵分解因子(即元素个数)
n_iter(int):训练轮数
data(ndarray):用户-电影评分矩阵
'''
#获取用户数与电影数
m,n = data.shape
#初始化参数
x = np.random.uniform(0,1,(m,d))
w = np.random.uniform(0,1,(d,n))
#创建评分记录表,无评分记为0,有评分记为1
record = np.array(data>0,dtype=int)
#梯度下降,更新参数
for i in range(n_iter):
x_grads = np.dot(np.multiply(record,np.dot(x,w)-data),w.T)
w_grads = np.dot(x.T,np.multiply(record,np.dot(x,w)-data))
x = alpha*x - lr*x_grads
w = alpha*w - lr*w_grads
#预测
predict = np.dot(x,w)
#将用户未看过的电影分值从低到高进行排列
for i in range(n):
if record[userID-1][i] == 1 :
predict[userID-1][i] = 0
recommend = np.argsort(predict[userID-1])
a = recommend[-1]
b = recommend[-2]
c = recommend[-3]
d = recommend[-4]
e = recommend[-5]
print('为用户%d推荐的电影为:\n1:%s\n2:%s\n3:%s\n4:%s\n5:%s'\
%(userID,movies_df['title'][a],movies_df['title'][b],movies_df['title'][c],movies_df['title'][d],movies_df['title'][e]))
recommend(123,1e-4,0.999,20,100,rating)