Browse Source

'更新了About'

master
刘冬煜 4 years ago
parent
commit
1e45692b4b
2 changed files with 12 additions and 15 deletions
  1. BIN
      style-transform-master/.vs/style-transform-master/v16/.suo
  2. +12
    -15
      style-transform-master/style-transform-master/html/index.html

BIN
style-transform-master/.vs/style-transform-master/v16/.suo View File


+ 12
- 15
style-transform-master/style-transform-master/html/index.html View File

@ -95,7 +95,7 @@
<p class="sp-layer" data-position="left" data-vertical="15%" data-show-delay="2000"
data-hide-delay="200" data-show-transition="left" data-hide-transition="right">
Lorem ipsum dolor sit amectetur adipici
风格迁移大师
</p>
</div>
@ -111,9 +111,9 @@
<div class="col-md-12 col-sm-12 col-xs-12 section-header wow fadeInDown">
<h2><span class="highlight-text">About</span></h2>
<p class="col-md-8 col-sm-10 col-xs-12 col-md-offset-2 col-sm-offset-1">Lorem ipsum dolor sit amet,
consectetur adipisicing elit. Quod, nam corporis quas, saepe minima error aperiam dolorum
aliquam, quis deserunt eos eius quisquam odio itaque.</p>
<p class="col-md-8 col-sm-10 col-xs-12 col-md-offset-2 col-sm-offset-1">不同的美术风格拥有不同的艺术特点,用于表现同一张图片时,情感也有所不同。
随着计算机视觉中特征可视化和生成模型的发展,将一张图片以不同风格呈现成为可能。
风格迁移模型正是将这一可能变成了现实。</p>
</div>
<!-- Section Header End -->
@ -122,28 +122,25 @@
</div>
<div class="col-md-6 col-sm-6 col-xs-12 customized-text wow fadeInDown black-ed">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Ipsa sit, numquam amet voluptatibus
<!--p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Ipsa sit, numquam amet voluptatibus
obcaecati ea maiores totam nostrum, ad iure rerum quas harum ipsum. lobcaecati ea maiores totam
nostrum, ad iure rerum quas harum ipsum. Rem ea ducimus quos quae quo.</p>
nostrum, ad iure rerum quas harum ipsum. Rem ea ducimus quos quae quo.</p-->
<div class="row">
<div class="col-md-11">
<strong>Bootstrap</strong>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aperiam iusto, natus est
ducimus saepe laborum</p>
<strong>VGG19</strong>
<p>预训练的卷积神经网络模型,用于实现图片特征提取并衡量损失。</p>
</div>
</div>
<div class="row">
<div class="col-md-11">
<strong>Responisve Theme</strong>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aperiam iusto, natus est
ducimus saepe laborum Lorem ipsum dolor sit amet.</p>
<strong>Loss</strong>
<p>采用 Content Loss + Style Loss 双误差方法,在风格迁移变换的同时减少对原图的损失。</p>
</div>
</div>
<div class="row">
<div class="col-md-11">
<strong>HTML5/CSS3</strong>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aperiam iusto, natus est
ducimus saepe laborum Lorem ipsum dolor sit amet.</p>
<strong>HTML5/CSS3/NodeJS</strong>
<p>前端、层叠样式表、后端的实现。</p>
</div>
</div>
</div>

Loading…
Cancel
Save