NoteOnMe博客平台搭建
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
 
 
 
 
 
 

74 行
2.3 KiB

from scipy.misc import imread,imshow
import os
from PIL import Image
import PIL
from model.img2seq import Img2SeqModel
from model.utils.general import Config, run
from model.utils.text import Vocab
from model.utils.image import greyscale, crop_image, pad_image,predictsize ,\
downsample_image, TIMEOUT
def interactive_shell(model):
"""Creates interactive shell to play with model
"""
model.logger.info("""
This is an interactive mode.
To exit, enter 'exit'.
Enter a path to a file
input> data/images_test/0.png""")
while True:
img_path = input("input> ")
if img_path == "exit":
break
if img_path[-3:] == "png":
img = imread(img_path)
elif img_path[-3:] == "pdf":
# call magick to convert the pdf into a png file
buckets = [
[240, 100], [320, 80], [400, 80], [400, 100], [480, 80], [480, 100],
[560, 80], [560, 100], [640, 80], [640, 100], [720, 80], [720, 100],
[720, 120], [720, 200], [800, 100], [800, 320], [1000, 200],
[1000, 400], [1200, 200], [1600, 200], [1600, 1600]
]
dir_output = "tmp/"
name = img_path.split('/')[-1].split('.')[0]
run("magick convert -density {} -quality {} {} {}".format(200, 100,
img_path, dir_output+"{}.png".format(name)), TIMEOUT)
img_path = dir_output + "{}.png".format(name)
crop_image(img_path, img_path)
pad_image(img_path, img_path, buckets=buckets)
downsample_image(img_path, img_path, 2)
img = imread(img_path)
img = predictsize(img)
im_converted = PIL.Image.fromarray(img)
im_converted.show()
img = greyscale(img)
hyps = model.predict(img)
with open("norm_formula_val.txt", "w") as f:
f.write(hyps[0])
model.logger.info(hyps[0])
if __name__ == "__main__":
# restore config and model
dir_output = "results/full/"
config_vocab = Config(dir_output + "vocab.json")
config_model = Config(dir_output + "model.json")
vocab = Vocab(config_vocab)
model = Img2SeqModel(config_model, dir_output, vocab)
model.build_pred()
model.restore_session(dir_output + "model.weights4/test-model.ckpt")
interactive_shell(model)