|
import click
|
|
|
|
|
|
from model.utils.data_generator import DataGenerator
|
|
from model.img2seq import Img2SeqModel
|
|
from model.utils.general import Config
|
|
from model.utils.text import Vocab
|
|
from model.utils.image import greyscale
|
|
|
|
from model.utils.text import load_formulas
|
|
from model.evaluation.text import score_files
|
|
|
|
|
|
@click.command()
|
|
@click.option('--results', default="results/full/", help='Dir to results')
|
|
def main(results):
|
|
# restore config and model
|
|
dir_output = results
|
|
|
|
config_data = Config(dir_output + "data.json")
|
|
config_vocab = Config(dir_output + "vocab.json")
|
|
config_model = Config(dir_output + "model.json")
|
|
|
|
vocab = Vocab(config_vocab)
|
|
model = Img2SeqModel(config_model, dir_output, vocab)
|
|
model.build_pred()
|
|
model.restore_session(dir_output + "model.weights4/test-model.ckpt")
|
|
|
|
# load dataset
|
|
test_set = DataGenerator(path_formulas=config_data.path_formulas_test,
|
|
dir_images=config_data.dir_images_test,
|
|
max_iter=3000, bucket=config_data.bucket_test,
|
|
path_matching=config_data.path_matching_test,
|
|
max_len=config_data.max_length_formula,
|
|
form_prepro=vocab.form_prepro)
|
|
|
|
# use model to write predictions in files
|
|
config_eval = Config({"dir_answers": dir_output + "formulas_test/",
|
|
"batch_size": 20})
|
|
files, perplexity = model.write_prediction(config_eval, test_set)
|
|
formula_ref, formula_hyp = files[0], files[1]
|
|
|
|
# score the ref and prediction files
|
|
scores = score_files(formula_ref, formula_hyp)
|
|
scores["perplexity"] = perplexity
|
|
msg = " - ".join(["{} {:04.2f}".format(k, v) for k, v in scores.items()])
|
|
model.logger.info("- Test Txt: {}".format(msg))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|