|
|
- import tensorflow as tf
- import numpy as np
-
- sess = tf.Session()
- inputs = tf.placeholder(dtype=tf.float32, shape=(1, 300, 300, 3))
- net = tf.layers.Conv2D(filters=2, kernel_size=3)(inputs)
- net = tf.nn.softmax(net, axis=-1)
- sess.run(tf.global_variables_initializer())
- sess.run(net, feed_dict={inputs: np.zeros(shape=(1, 300, 300, 3), dtype=np.float32)})
|