|
from fastai.vision import *
|
|
|
|
|
|
class FeatureLoss(nn.Module):
|
|
def __init__(self, m_feat, layer_ids, layer_wgts):
|
|
super().__init__()
|
|
self.m_feat = m_feat
|
|
self.loss_features = [self.m_feat[i] for i in layer_ids]
|
|
self.hooks = hook_outputs(self.loss_features, detach=False)
|
|
self.wgts = layer_wgts
|
|
self.metric_names = ['pixel', ] + [f'feat_{i}' for i in range(len(layer_ids))
|
|
] + [f'gram_{i}' for i in range(len(layer_ids))]
|
|
|
|
def make_features(self, x, clone=False):
|
|
self.m_feat(x)
|
|
return [(o.clone() if clone else o) for o in self.hooks.stored]
|
|
|
|
def forward(self, input, target):
|
|
out_feat = self.make_features(target, clone=True)
|
|
in_feat = self.make_features(input)
|
|
self.feat_losses = [base_loss(input, target)]
|
|
self.feat_losses += [base_loss(f_in, f_out) * w
|
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
|
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out)) * w ** 2 * 5e3
|
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
|
self.metrics = dict(zip(self.metric_names, self.feat_losses))
|
|
return sum(self.feat_losses)
|
|
|
|
def __del__(self): self.hooks.remove()
|
|
|