|
|
- import tensorflow as tf
-
- try:
- import tensorflow.python.keras as keras
- from tensorflow.python.keras import layers
- from tensorflow.python.keras import backend as K
- except:
- import tensorflow.keras as keras
- from tensorflow.keras import layers
- from tensorflow.keras import backend as K
-
-
- class Attention_layer(layers.Layer):
- def __init__(self, **kwargs):
- super(Attention_layer, self).__init__(**kwargs)
-
- def build(self, inputs_shape):
- assert isinstance(inputs_shape, list)
-
- # inputs: --> size
- # [(None,max_contents,code_vector_size),(None,max_contents)]
- # the second input is optional
- if (len(inputs_shape) < 1 or len(inputs_shape) > 2):
- raise ValueError("AttentionLayer expect one or two inputs.")
-
- # (None,max_contents,code_vector_size)
- input_shape = inputs_shape[0]
-
- if (len(input_shape) != 3):
- raise ValueError("Input shape for AttentionLayer shoud be of 3 dimensions.")
-
- self.input_length = int(input_shape[1])
- self.input_dim = int(input_shape[2])
-
- attention_param_shape = (self.input_dim, 1)
-
- self.attention_param = self.add_weight(
- name='attention_param',
- shape=attention_param_shape,
- initializer='uniform',
- trainable=True,
- dtype=tf.float32
- )
-
- super(Attention_layer, self).build(input_shape)
-
- def call(self, inputs, **kwargs):
- assert isinstance(inputs, list)
-
- # inputs:
- # [(None,max_contents,code_vector_size),(None,max_contents)]
- # the second input is optional
- if (len(inputs) < 1 or len(inputs) > 2):
- raise ValueError("AttentionLayer expect one or two inputs.")
-
- actual_input = inputs[0]
- mask = inputs[1] if (len(inputs) > 1) else None
-
- if mask is not None and not (((len(mask.shape) == 3 and mask.shape[2] == 1) or (len(mask.shape) == 2)) and (
- mask.shape[1] == self.input_length)):
- raise ValueError(
- "`mask` shoud be of shape (batch, input_length) or (batch, input_length, 1) when calling AttentionLayer.")
-
- assert actual_input.shape[-1] == self.attention_param.shape[0]
-
- # (batch, input_length, input_dim) * (input_dim, 1) ==> (batch, input_length, 1)
- attention_weights = K.dot(actual_input, self.attention_param)
-
- if mask is not None:
- if (len(mask.shape) == 2):
- mask = K.expand_dims(mask, axis=2) # (batch, input_dim, 1)
- mask = K.log(mask) # e.g. K.exp(K.log(0.)) = 0 K.exp(K.log(1.)) =1
- attention_weights += mask
-
- attention_weights = K.softmax(attention_weights, axis=1)
- result = K.sum(actual_input * attention_weights, axis=1)
- return result, attention_weights
-
- def compute_output_shape(self, input_shape):
- return input_shape[0], input_shape[2] # (batch,input_length,input_dim) --> (batch,input_dim)
|